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Abstract

This paper introduces a two-phase sub population genetic algorithm to solve the parallel machine-scheduling problem. In the first phase,

the population will be decomposed into many sub-populations and each sub-population is designed for a scalar multi-objective. Sub-

population is a new approach for solving multi-objective problems by fixing each sub-population for a pre-determined criterion. In the second

phase, non-dominant solutions will be combined after the first phase and all sub-population will be unified as one big population. Not only the

algorithm merges sub-populations but the external memory of Pareto solution is also merged and updated. Then, one unified population with

each chromosome search for a specific weighted objective during the next evolution process. The two phase sub-population genetic algorithm

is applied to solve the parallel machine-scheduling problems in testing of the efficiency and efficacy. Experimental results are reported and

the superiority of this approach is discussed.
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1. Introduction

The literature of parallel machine-scheduling problems

has been extensively reviewed by Cheng and Sin (1990).

Garey and Johnson (1979) showed that scheduling jobs on

two identical machines to minimize the makespan is

NP-hard (NP is the abbreviation of Non-Polynomial). As

identified by Brucker (1998) when the number of machine is

greater than two, the problem is even strong NP-hard.

Therefore, the parallel machine-scheduling

problem presents a great challenge to the industrial

practitioners and academic researchers. As a result, efficient

heuristic algorithm should be developed in order to deal

with practical industrial scheduling problems especially in

drilling operation-scheduling problems of Printed Circuit

Board (PCB) industries as presented by Hsieh, Chang, and

Hsu (2003).

Owing to the development in genetic algorithm, it

provides a new method and new direction for scheduling

researchers to apply this new tool. Successful application
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examples can be found in Carlos and Peter (1995), Chang,

Hsieh, and Lin (2002), Chang, Hsieh, and Wang (2003), Lo

and Bavarian (1992), Neppali, Chen, and Gupta (1996),

Sridhar and Rajendran (1996), and Wang (2003, 2005).

However, in practical application the goal in PCB industries

is always multi-objective which includes makespan, due-

date and flowtime. Recent development in Evolutionary

Multi-objective Optimization provides interesting results as

discussed by Deb, Amrit Pratap, and Meyarivan (2000) and

Zitzler, Laumanns, and Bleuler (2004). In that, different

EMO algorithms are proposed and efficiency and solution

quality are greatly improved.

Inspired by these pioneer works as discussed above, this

research proposes a two phase sub-population genetic

algorithm to solve the parallel machine-scheduling problem.

In the first phase, the population will be decomposed into

many sub-populations and each sub-population is designed

for a scalar multi-objective. Sub-population is a new

approach for solving multi-objective problems by fixing

each sub-population for pre-determined criteria. In the

second phase, non-dominant solutions will be combined

after the final evolutions. One unified population by

combining these sub-populations will be applied for regular

evolution.

The rest of the paper is organized as follows: Section 2

gives literature review. Section 3 introduces the TPSPGA
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algorithm. Then experimental results are given in Section 4.

Finally, the conclusion is discussed and performance of the

algorithm is evaluated.
2. Literature review

The genetic algorithm has been widely discussed. The

following related works present the efforts of multi-

objective genetic algorithm and its application on schedul-

ing problem.

Holland (1975) proposed the Genetic Algorithm (GA)

that imitates the natural evolution progress, including the

selection, crossover, and mutation. The procedure produces

better offspring in accommodating to the environment.

Schaffer (1985) proposed VEGA (Vector Evaluated Genetic

Algorithm) to solve the Pareto-optimal solution of multi-

objective problem. The VEGA is the first method modifying

the GA to solve multi-objective problems. It selects better

chromosomes from separate sub-mating pools so that the

selected chromosomes satisfy different objectives. How-

ever, the drawbacks of the algorithm are: (1) the algorithm

ca not guarantee that all the solutions are Pareto-optimal

solution; and (2) the algorithm cannot keep the diversity of

the solutions during the evolving process.

Muruta and Ishibuchi (1996) employed the structure of

genetic algorithm in searching the multi-objective problem,

and the algorithm is named MOGA (Multi-Objective

Genetic Algorithm). One characteristic of MOGA is using

the dynamic weighting to transform the multiple objectives

into single objective, which randomly assigns different

weight value to different objectives. The algorithm also

applies the elite preserving strategy that randomly selects

chromosomes from Pareto set. This technique prevents from

sinking into local optimal. Muruta, Ishibuchi, and Tanaka

(1996) found the MOGA was superior to VEGA or GA on

multi-objective problem of flow shop scheduling problem.

NSGA2 (Non-dominated Sorting Genetic Algorithm-II)

was proposed by Deb et al. (2000), where the Elitism

strategy was adopted. Besides, in order to keep the solution

diversity, the algorithm also provided a crowding distance

to measure the density of individuals in solution space.

Coello Coello et al. (2001) proposed micro-GA, which

refers to small-population genetic algorithm with reinitia-

lization. They found that micro-GA is able to converge to

better solution although there are few individuals in each

population. The more individuals in a population, algorithm

needs more computational time. Therefore, it saved the

computational effort and increases the efficiency. The

performance of GA that accompanied vector evaluated

approach (from the concept of Schaffer, 1985) and weighted

criteria approach (linear combination of objectives) on

multi-objective scheduling problem was evaluated by

Neppali et al. (1996). The evaluation result showed that

the presented vector evaluated approach was better than

weighted criteria approach. Muruta and Lshibuchi (1994)
utilized MOGA to solve the flowline scheduling problem,

which emphasizes on random weight assignment and

Elitism. The research pointed out that the Elitism was able

to find out the near Pareto set more efficiently and fast.

Funda and Ulusoy (1999) employed the GA and

considered the total weighted earliness and tardiness on

the mutliobjective scheduling problem of parallel

machine. Their suggestion is that if the local search was

included in the GA, the performance may become better.

Gupta, Neppalli, and Werner (2001) discussed the multi-

objective scheduling problem of parallel machines, which

attempts to minimize the make span under the consider-

ation of minimizing the flow time. They proposed Two-

Machine Optimization Procedure, Longest Processing

Time Procedure, Multi-fit Procedure, and Hierarchical

Criteria Algorithm. The experiment result showed

the combination of Hierarchical Criteria Algorithm and

Multi-fit Procedure was more efficient when compared to

others combinations.

Motivated by the literature discussed above, this research

introduces a two-phase sub population genetic algorithm to

solve the parallel machine-scheduling problem. Detailed

procedures of TPSPGA are presented in Section 3.
3. Two phase sub-population genetic algorithm

(TPSPGA)

According to Simoes and Costa (2002), the loss of

diversity may mean pre-mature of evolution algorithm. In

order to prevent the searching procedure from being trapped

into local optimality, this research proposes a two phase

sub-population genetic algorithm (TPSPGA) to solve the

parallel machine-scheduling problems. The basic idea of

TPSPGA is to decompose the population into several sub-

populations, which are assigned different weights by

scalarizing multiple objectives into single objective. Each

sub-population is just like a squad team with a pre-assigned

goal and hopefully they will be marching in the right

direction to reach the high peak of the landscape in terms of

fitness performance. By the effort, every sub-population

concentrates on specific exploring space and thus the

diversity of the population can be kept among these sub-

populations. After certain evolutions of the searching

process, to further improve the solution quality, all the

sub-population will be reunified and each individual

chromosome will be reassigned a scalarized objective to

further expand the searching process until the final near-

optimal solution is found.

As discussed above, there are three main characteristics

of the TPSPGA method: (1) numerous small sub-popu-

lations are designed to explore the solution space; (2) the

multiple objectives are scalarized into single objective for

each sub-population; and (3) two phase implementation is

applied to deal with the gradually narrowing down of the

searching space. The framework of TPSPGA is illustrated in
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Fig. 1 and the detail procedure will be explained in Sections

3.1–3.5.

As illustrated in Fig. 1, there are two stages in TPSPGA:

at the first stage, there are two objectives that need to be

minimized. Suppose the number of individuals of original

population is N. Because the algorithm divides the

population into n small sub-populations, each sub-popu-

lation contains N/n individuals. Furthermore, every sub-

population is assigned with two different weights for these

two objectives. For example, all chromosomes in sub-

population n is assigned with the weight value (Wn1, Wn2),

Wn1 and Wn2 stand for the weight of the first and second

objective, respectively. Therefore, we scalarize the two

objectives into a single one by a linear combination of these

two objectives. Consequently, these sub-populations will

search for different solution areas as shown in Fig. 2.

In the second stage, it is possible that TPSPGA may miss

some important searching spaces. To further improve the

solution quality of TPSPGA, we will restore these sub-

populations into one big population in the beginning. Then,

we randomly specify a linear combination of weight of these
two objectives for each individual in the whole population

as shown in Fig. 3.

The detailed procedures of each stage are explained

in the following section.
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3.1. Parameters of the algorithm

Parameters of the algorithm are listed as follows:
N
 number of chromosomes.
ns
 number of sub-populations.
n
 number of individuals in each sub-population.
Iteration1
 number of iterations in phase one.
Iteration2
 number of iterations in phase two.
3.2. General scheme of TPSPGA

The detailed procedure of TPSPGA is explained as

follows:

Algorithm 1. TPSPGA()
1.
 Initialize()
2.
 DividePopulation()
3.
 AssignWeightToEachObjectives()
4.
 counter)0
5.
 while counter!Iteration1 do
6.
 for iZ1 to ns do
7.
 FindParetoi()
8.
 Fitnessi()
9.
 Elitismi()
10.
 Selectioni()
11.
 Crossoveri()
12.
 Mutationi()
13.
 Replacementi()
14.
 end for
15.
 counter)counterC1
16.
 end while
17.
 counter)0
18.
 Merge()
19.
 while counter!Iteration2 do
20.
 FindPareto()
21.
 Fitness()
22.
 Elitism()
23.
 Selection()
24.
 Crossover()
25.
 Mutation()
26.
 Replacement()
27.
 counter)counterC1
28.
 end while
3.3. The first phase

The procedure initialization is used to generate the

chromosomes of a population, which is according to the

population size defined by the user. The procedure

Divide Population is to divide the original population

into ns sub-populations.

At the procedure Assign Weight To Each Objectives,

each sub-population is assigned different weights and

each individual in the same sub-population share the

same weight. The scalarized weight of each sub-

population is defined as below

ðWn1;Wn2Þ Z
1

Ns C1
!n; 1 K

1

Ns C1
!n

� �
ð1Þ

where n is the nth sub-population.

After the weight value assignment, the objective value of

sub-population n is defined as follows

f ðxÞ Z Wn1$f ðx1ÞCWn2$f ðx2Þ ð2Þ

where
f(x1)
 the first objective function
f(x2)
 the second objective function
To calculate the fitness value, we have to calculate the

objective value of the sub-population and to normalize the

objective value. In this study, we concern two scheduling

objectives, including the makespan and tardiness of all jobs.

The metrics are as follows

ZTT Z
Xn

iZ1

Ti; Ti Z maxfCi Kdi; 0g ð3Þ

ZTC Z maxfF1;F2;.;Fng ð4Þ

where
ZTT
 total tardiness time
ZTC
 total completion time or makespan
Because the scale of each objective is different, in order

to evaluate the solution quality, this research will normalize
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these objective values between 0 and 1. The equations are

listed as follows:

f ðx1Þ Z
Xi

t1 K f W
t1

f B
t1 K f W

t1

0% f ðx1Þ%1 ð5Þ

f ðx2Þ Z
Xi

t2 K f W
t2

f B
t2 K f W

t2

0% f ðx2Þ%1 ð6Þ

The Elitism strategy adopted at the first stage is randomly

selecting a number of individuals from non-dominated set

into mating pool; therefore we can pick these individuals

while in the crossover procedure. The Elitism strategy of

each sub-population is independent.

The binary tournament selection is employed in the

selection operation of the first phase. The reason why we do

not employ the roulette wheel in the first phase is that there is

few individuals in each sub-population so that we apply the

binary tournament may save time than roulette wheel in this

phase. The smaller objective value of each chromosome has

a better chance to be selected. Every sub-population works

independently so that they will not influence each other.

There are numerous crossover and mutation methods.

We utilize the two-point crossover and moving position

mutation for the Crossover procedure and the Mutation

procedure, respectively, because Muruta and Ishibuchi

(1994) found both of them were the best approaches for

these two objectives.
Table 1

Numerical data of 30-job problem

Job number Processing

time (mins)

Due date

(mins)

1 1020 1920

2 816 1920

3 770 1440

4 1500 1440

5 1000 1440

“ “ “
30 384 960
3.4. The second phase

The unique characteristic of the second phase is that the

second phase merges these sub-populations into one big

population. In other words, the size of the new population is

equal to the original population size. Not only the algorithm

merges sub-populations but the external memory of Pareto

solution is also merged and updated.

There are two other differences compared to the first

phase. The first is the vector of weight value, which is

randomly assigned to each individual population. For

example, we have a weight vector (Wn1,Wn2) for the

individual n and Wn1 is the weight value for first objective

and Wn2 for the second objective, respectively. We generate

the random value for Wn1. Since Wn1CWn2 should equal to

one, Wn2 is equivalent to 1KWn1 or 1-random value.

Therefore, the assignment of weight value for individual

population n can be written as the following:

ðWn1;Wn2Þ Z ðWn1; 1 KWn2Þ

Z ðrandom value; 1-random valueÞ ð7Þ

The other difference is that the selection strategy

employs roulette wheel selection, which is proposed by

Goldberg (1989). The selection method in the first phase
applies the binary tournament selection. Other than the

above differences, the rest of the procedures are the same as

in phase one. Fig. 2 shows all individual population

approaching the optimal Pareto set in different directions.
3.5. Performance measure

There are various metrics, which are applied to compare

the non-dominated sets of evolution algorithms. Hansen and

Jaszkiewicz (1998) defined the performance relations,

which are weak outperformance, strong outperformance,

and complete outperformance. They express the relation-

ship between two sets of internally non-dominated objective

vectors. Knowles and Corne (2002) compared several

metrics based on the outperformance relations. This

research selects the generational distance (GD) to measure

the superiority of the non-dominated set and the method is

developed by Van Veldhuizen (1999). It is because the

method is compatible with the strong outperformance and

complete outperformance, non-inducing, non-cardinality,

and has relatively cheap calculation effort according to

Knowles and Corne (2002). The equation of GD is defined

as follows:

GD Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
iZ1 d2

i

p
n

ð8Þ

where n is the number of vectors in the approximation set

and di is the distance in the objective space between vector i

and the nearest member of Z* (the reference solution set).

The lower value of GD, the better of solution quality we

have.
4. Experimental results

The experiment to be conducted in this paper is the

scheduling problem of drilling operation in a printed circuit

board factory located in Chung-Li, Taiwan, ROC. Numerical

data of 30-job 10-machine problem including job infor-

mation and machine flow are presented in Table 1 and Fig. 4.

This factory has developed a simple computerized

scheduling system incorporating simple heuristics such as

Early Due Date (EDD) or Shortest Processing Times (SPT)

while the solution quality is poor and it not flexible enough
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to react to the dynamic environment, i.e. the major incentive

for us to develop a more efficient and effective system such

as TPSPGA to improve the system.

In this section, TPSPGA is compared to MOGA and

NSGA II with three test problem sets. They are 30 jobs

and 10 machines, 50 jobs and 15 machines, and 65 jobs and

18 machines.

The parameters’ setting of TPSPGA is as following:
N

1500

2000

2500

3000

3500

4000

2000

Fig. 5. The com
300
ns
 30
n
 10
Iteration1
 400
Iteration2
 600
Crossover rate
 0.9

Table 2
Mutation rate
 0.5

The GD values of the 30 jobs and 10 machines problem
Elitist
 top 20% of population

TPSPGA NSGA2 MOGA

Seed 1 73.50 445.30 687.46

Seed 2 68.38 468.18 413.20

Seed 3 77.46 529.26 426.86

Seed 4 85.59 459.16 400.30

Seed 5 360.21 437.21 507.90

Average 133.03 467.82 487.14
Because there are 300 chromosomes in a population and

we are going to separate it into 30 sub-populations, there

will be 10 chromosomes in each sub-population. Further-

more, we apply the Elitism preserving 20% of a population.

Consequently, there will be two better individuals that are
2100 2200 2300 2400 2500 2600
Make span

TPSPGA NSGA2 MOGA

parison of the 30 jobs and 10 machines problem.
kept in each sub-population at the first phase and 60 better

ones are stored into external memory at the second phase.

The following sections are the experimental result of the

three test cases.
4.1. The 30 jobs and 10 machines

Fig. 5 shows that the performance of TPSPGA is superior

to that of NSGA2 and NSGA2 is better than MOGA. From

the figure, the solutions of TPSPGA dominate all solutions

in NSGA2 and MOGA. Table 2 represents the GD values of

each method and we repeat the experiment for five times.
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Fig. 6. Comparisons of the 50 jobs and 15 machines.
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Fig. 7. Comparisons of the 65 jobs and 18 machines.

Table 4

GD values of the 65 jobs and 18 machines problem

TPSPGA NSGA2 MOGA

Seed 1 25.34 77.79 172.60

Seed 2 55.40 26.54 130.54

Seed 3 23.73 40.85 121.34

Seed 4 70.30 96.68 105.94

Seed 5 18.90 59.66 144.75

Average 38.73 60.30 135.03

Table 3

GD values of the 50 jobs and 15 machines problem

TPSPGA NSGA2 MOGA

Seed 1 12.88 42.28 110.57

Seed 2 23.79 40.07 156.22

Seed 3 43.93 69.09 73.87

Seed 4 17.44 9.67 88.53

Seed 5 39.20 41.62 60.60

Average 27.45 40.55 97.96
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The GD values show that the TPSPGA is better than the

other two in the case.
4.2. The 50 jobs and 15 machines

Fig. 6 shows that the TPSPGA is superior to NSGA2 and

NSGA2 is better than MOGA. Table 3 represents the GD

values with five times repeated experiment, illustrating

TPSPGA is better than NSGA2 and MOGA except the seed

number 4.
4.3. The 65 jobs and 18 machines

Fig. 7 shows that the TPSPGA is superior to NSGA2 and

NSGA2 is better than MOGA. However, NSGA2 indeed has

better diversity in the case. Table 4 represents the GD

values with five times repeated experiment. In this case,

the TPSPGA is also better than the other two except the seed

number 2.

TPSPGA has been compared with the NSGA2 and

MOGA on three test problems and each problem has five

replicates. From the computational result, performances of

TPSPGA are better than those of NSGA2 and MOGA

according to the GD value. For example, TPSPGA is able

to dominate all solutions of NSGA 2 and MOGA shown in

Fig. 3 in the first test problem. GD values calculated for

these three algorithms also prove that TPSPGA has better

performance. Thus, TPSPGA completely outperforms

NSGA2 and MOGA. As far as the second and third test

problem, there is only one case that NSGA2 is superior to

TPSPGA. Therefore, TPSPGA has better performances in

average case.
5. Discussion and conclusions

TPSPGA is developed in this research for solving the

multi-objective scheduling problem. The algorithm is

divided into two phases. The first phase applies sub-

populations, which concentrates on specific search space

and prevents all individuals from being converged into

a local optimal. Then, in order to explore solution space

ignored or missed in the first phase, sub-population is

regrouped as a single big population. Each individual

chromosome in this big population of the second phase is

randomly assigned a weight value to explore for more

solution spaces.

This research compares the solution quality among

TPSPGA, NSGA2, and MOGA using three different test

experiments. The results show that TPSPGA is not only able

to find Pareto-optimal solution but also has better perform-

ance than the other two in average performance. Therefore,

it is an inspiration and encouragement for researchers who

are interested in the area. In the future, TPSPGA can be

further extended to three objectives or multi-dimensional

continuous problems. The concept of sub-population can be

further embedded in local search procedure to improve the

solution quality of the algorithm.
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