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A B S T R A C T

Previous research has shown that sub-population genetic algorithm is effective in solving the multi-

objective combinatorial problems. Based on these pioneering efforts, this paper extends the SPGA

algorithm with a global Pareto archive technique and a two-stage approach to solve the multi-objective

problems. In the first stage, the areas next to the two single objectives are searched and solutions

explored around these two extreme areas are reserved in the global archive for later evolutions. Then, in

the second stage, larger searching areas except the middle area are further extended to explore the

solution space in finding the near-optimal frontiers. Through extensive experimental results, SPGA II does

outperform SPGA, NSGA II, and SPEA 2 in the parallel scheduling problems and knapsack problems; it

shows that the approach improves the sub-population genetic algorithm significantly. It may be of

interests for researchers in solving multi-objective combinatorial problems.
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1. Introduction

Combinatorial problems occur in many practical applications
and the approaches to these problems can be classified as either
exact or approximate algorithms. Exact algorithms are guaranteed
to find an optimal solution by systematically searching the solution
space. However, due to the NP-completeness of many combina-
torial optimization problems, the time needed to solve them may
grow exponentially in the worst case. Moreover, if the multiple
objectives of the combinatorial problems are considered, they
become even more complex. To practically solve these problems,
one has to be satisfied with finding good, approximately optimal
solutions in reasonable, that is, polynomial time.

Recently, researchers have developed meta-heuristics to solve
the combinatorial problems with practical sizes. New development
in evolutionary multi-objective optimization provides interesting
results as discussed by Deb et al. [1] and Zitzler et al. [2]. Moreover,
there are some researchers who propose their sub-population-like
approaches, such as segregative genetic algorithms [3], multi-
sexual genetic algorithm [4], multi-population genetic algorithm
[5], hierarchical fair competition model [6], MO particle swam
optimization [7,8], and sub-population GA [9], MOTGA [24],
MOEA/D [10], MGSPGA [11], and multi-objective immune algo-
rithm [12].
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The new algorithm, i.e., SPGA II, developed in this research
extends the result in our previous research [9] to solve the
combinatorial problems. According to previous researches of these
sub-population algorithms such as segregative genetic algorithms
and multi-sexual genetic algorithm, they create a chance for these
sub-populations to be able to communicate with each other
occasionally thus the solution quality can be further improved. As a
result, the major contribution of SPGA II is to develop a mechanism
to exchange information within these sub-populations. The
mechanism of SPGA II is to apply the Pareto set generated from
these sub-populations and to save these Pareto set as a global
archive. Therefore, once a sub-population reaches a better non-
dominated solution, other sub-populations are able to apply them
directly within their searching areas. Then, these Pareto set in the
global archive will guide all individuals in the same population
searching toward the true Pareto front.

There is a second characteristic that distinguishes SPGA II from
SPGA. The SPGA II applies a two-stage approach, which attempts to
derive a better convergent, and a diverse effect. The first stage will
apply only few sub-populations and focus on exploring solutions
near each individual objective function. The solutions derived from
Stage I will be regenerated for Stage II as initial solutions and this
process will encourage the information cross exchange within each
sub-population. At the second stage, SPGA II explores the solution
space more extensively. The procedure is identical to that of SPGA.
However, to be more efficiently locating the searching areas, some
sub-populations located near the middle area (like the weight
vector [0.5, 0.5] for these two objective functions) are ignored.
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Fig. 1. The framework of the SPGA II.
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Consequently, the advantage of this modified procedure can create
convergent solutions in the first stage and then searching for
more diverse areas to find the frontiers with better solution quality
in the second stage.

The rest of the research is organized as follows: Section 2
introduces the combinatorial problems. Section 3 explains detail
procedures of SPGA II. Section 4 is the experimental results for the
bi-criteria parallel scheduling problems and knapsack problems.
Finally, the conclusions are made and the future researches are
provided.

2. Combinatorial optimization problems

Combinatorial optimization problems are characterized by their
well-structured problem definition as well as by their huge number
of solution spaces in practical application areas. Especially in areas
like routing, task allocation, or scheduling such kinds of problems
often occur. Approaches by utilizing classical methods of operations
research (OR) often fail due to the exponential growth of
computational times. Therefore, in practice, heuristics are com-
monly used even if they are unable to guarantee an optimal solution.

Heuristic techniques that mimic natural processes developed
over the last thirty years have produced ‘good’ results in
reasonable short runs for this class of optimization problems. In
addition heuristics are much more flexible regarding modifications
in the problem description when compared to classical OR
methods, and so they are often superior in their results. Heuristics
such as genetic algorithms (GAs) attempt to imitate the biological
evolution of a species in order to achieve an almost optimal state
whereas simulated annealing (SA) is initially inspired by the laws
of thermodynamics in order to cool down a certain matter to its
lowest energetic state.

Recently, plenty of work has been investigated, in order to
introduce new coding standards and operators especially for
genetic algorithms. Almost all of these approaches have one thing
in common: They are quite problem specific and often they do not
challenge the basic principle of genetic algorithms. Considering the
advantages and disadvantages of certain heuristic methods in
order to combine there favorable attributes in a generic or problem
specific way, a generic hybrid heuristic can be created. In the
following we will exemplarily consider the main aspects when
designing a hybrid heuristic method. Furthermore, we propose a
new approach and look upon the concepts of a standard genetic
algorithm as an artificial self-organizing process in order to
overcome some of the fundamental problems genetic algorithms
are concerned with in almost all areas of applications.

3. Sub-population genetic algorithm

Since SPGA II is based on the concepts of Chang et al. [9], the detail
procedures of SPGA will be studied in Section 3.1. Moreover, the idea
of global Pareto archive will be further explained in Section 3.2 to
justify the reason why it can enhance the performance. Furthermore,
the two-stage approach is described in Section 3.3. As for the
knapsack problem, since GA does not have the ability to exclude the
infeasible solutions, the paper develops a repair operator to fix the
problem. The repair method is discussed in Section 3.4. Finally, in
order to evaluate the solution quality among different algorithms,
the performance metric is discussed in Section 3.5.

3.1. The concept of SPGA and the global Pareto archive

In order to prevent the searching procedure from being trapped
into local optimality for the combinatorial problems, this research
extends the sub-population-like GA by Chang et al. [9]. There are
two main characteristics of the sub-population-like method: (1)
numerous small sub-populations are designed to explore the
solution space and (2) the multiple objectives are scalarized into a
single objective for each sub-population. Because the sub-
populations are designed to explore specific region, the Pareto-
optimal solution are scattered uniformly over the frontier. A
uniform design method related to the scalarizing idea is employed
to distribute the solution uniformly [26]. Fig. 1 shows the
framework of the SPGA algorithm.

In SPGA, each sub-population works independently and do not
communicate with each other. However, from previous researches
of Lis and Eiben [4] and Affenzeller [3], the sub-population should
communicate to each other so that it may bring better convergence
and diversity. Therefore, this research considers how to exchange
information within these sub-populations while they are exploring
the different solution space. The proposed approach adopts the
global Pareto achieve to solve the combinatorial optimization
problems. The concept of the global archive for SPGA is shown in
Fig. 1.

Since the original design of SPGA does not allow the Pareto
archives sharing their own information with each other, each sub-
population will work independently. However, if there is a link
among these sub-populations, there are chances that once a sub-
population finds a better solution, other sub-populations can also
adopt it to further improve the solution quality within its own
searching area. Consequently, the main idea of the modified SPGA
is to employ the same Pareto set, which is assigned as a global
archive, to let each sub-population communicate with each other.
Hence, after a new solution is identified, other sub-populations can
adopt it directly. Therefore, the main difference between the
original SPGA and the SPGA II is the Pareto archive. In SPGA, there
are m sub-populations and there are m Pareto archives, but there is
only one external archive applied in SPGA II. The second difference
between SPGA and SPGA II is the two-stage procedure, which can
improve the convergence and diversity of the solution quality at
each different stage.

3.2. The two-stage approach

According to some empirical results, it is hard to obtain a
widespread solution for multi-objective combinatorial problems.
Therefore, some algorithms would like to preserve the solutions
that are close to the individual objective space. Take the NSGA II [1]
to solve a bi-objective problem for example; it keeps the extreme
solutions area in the upper and lower corners during the first stage.
In other words, the extreme solutions are saved. In addition, since
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the multi-population genetic algorithm [5] let the sub-population
evolves separately at the second stage, it might be able to explore
more extreme solutions. Consequently, the first stage will focus on
exploring extreme solutions. Besides, comparing with MPGA, SPGA
II applies the global archive technique in the first stages. As a result,
even though a sub-population finds a new efficient solution, other
sub-populations can also benefit from that.

There is another advantage in adopting few sub-populations at
the first stage. Because some sub-populations are initialized in the
first stage and they are not re-initialized again at the second stage,
these sub-populations still can evolve at the second stage by using
the global archive. There are more chances for these global Pareto
archive to be convergent since their probabilities of evolving are
doubled. In summary, the two-stage approach might result in
better converging effect.

In order to simplify the procedure in the second stage, the sum
of the number of sub-populations of stage 1 and stage 2 is equal
to the total number of sub-populations that is n. The second stage
runs all sub-populations that accept some weight vectors located
at the middle. For instance, suppose the total number of sub-
populations is 35 and there are 10 sub-populations implemented
at the first stage. Assume sub-populations from 1 to 5 and from
31 to 35 are executed in the first stage. Then, there are (n-10)
sub-populations to be further explored in the second stage,
including sub-populations from 1 to 13 and from 24 to 35. The
detailed procedures of each stage are explained in the following
section.

3.3. Procedures of the SPGA II

The parameters of SPGA II such as N, ns, n, and iteration are
total number of chromosomes, total number of sub-populations,
number of individuals (chromosomes) in each sub-population,
and number of iterations (number of solutions should be
examined/ns), respectively. Other parameter set ups for flow-
shop scheduling problem in selection, crossover, mutation,
objective function calculation, fitness assignment, and weight
assignment are binary tournament, two points crossover, shift
mutation [25], total makespan and total tardiness-time, and
scalarized weight assignment, respectively. The encoding
technique of chromosomes is a sequential type for scheduling
problems.

As for the knapsack problem, the uniform crossover, bit flip
mutation, and total profit of multiple knapsacks are applied. The
algorithm is able to handle the flowshop and knapsack problem
directly. However, in the Knapsack problem a solution vector x may
not be feasible because the constraints are involved; the paper will
discuss how to handle the constraint in Section 3.4. The pseudo-
code for SPGA II is given as follows:

Algorithm 1. The Main Procedure of SPGA II()

ns: the total number of sub-populations
generations: the total number of generations of each sub-
population
p: the last sub-population index of the region 1 at the first stage
q: the first sub-population index of the region 2 at the second
stage
m: the last sub-population index of the region 1 at the first stage
k: the first sub-population index of the region 2 at the second
stage

1: Initialize()
2: DividePopulation()
3: AssignWeightToEachObjectives()
4: Stage One: SPGA (p, q, ns, generations)
5: InitiateSubPopulations(p, m, k, q)
6: Stage Two: SPGA (m, k, ns, generations)
Algorithm 2. SPGA(index1, index2, ns, generations)
1: c
ounter 0

2: w
hile counter < generations do

3:
 for i = 1 to index1 and i = index2 to ns do

4:
 Evaluate Objectives and Fitness(i)

5:
 FindPareto(i)

6:
 Selection with Elitism Strategy(i)

7:
 Crossover(i)

8:
 Mutation(i)

9:
 Replacement(i)
10:
 end for

11:
 counter counter +1

12: e
nd while
Algorithm 3. InitiateSubPopulations (start1, end1, start2, end2)
1: f
or i = start1 to end1and i = start2 to end2 do

2:
 for j = 1 to populationSize do

3:
 Solution = tournamentSelection(p, q, ns)

4:
 setSolution (i, j, Solution)

5:
 end for

6: e
nd for

The procedure initialize is to generate a set of chromosomes
according to the population size in the beginning. The procedure
DividePopulation is to divide the original population into ns sub-
populations. The procedure AssignWeightToEachObjectives is to
assign different weight values to each sub-population and the
individuals in the same sub-population will share the same weight
value. Since the problem to be solved in this research is a bi-criteria
problem, the vector size is set to two. The combination of weight
vector is formulated as follows:

ðwn1;wn2Þ ¼ ð
1

þ1
n; 1� 1

þ1
nÞ (1)

where n is the nth sub-population.
After the weight assignment, the corresponding scalarized

objective value of these two objectives, i.e., f1 (x) and f2 (x), in each
sub-population is defined as Eq. (2). Because the total tardiness and
makespan are the two objectives to be considered in the flowshop
scheduling problem, we will replace f1 (x) and f2 (x) by ZTT and ZTC,
where ZTT and ZTC denote total tardiness time and makespan for
each solution x. ZTT and ZTC are defined in Eqs. (4) and (5),
respectively.

Min=Max f ðxÞ ¼ wn1 f 1ðxÞ þwn2 f 2ðxÞ (2)

Min f ðxÞ ¼ wn1ZTTðxÞ þwn2ZTCðxÞ (3)

ZTT ¼
Xn

i¼1

Ti; Ti ¼maxfCi � di;0g (4)

ZTC ¼maxfF1; F2; � � � ; Fng (5)

It is the same for the Knapsack problem, and f1(x) and f2(x) are
replaced by P1(x) and P2(x), respectively. However, the objective of
the knapsack problem is to maximize its profit.

Because the scales of the two objectives are different, the
objective values are normalized into a single unit interval. The
normalization equations for the first objective function and the
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second one are formulated as follows:

f 1ðxÞ ¼
Xi

t1 � f W
t1

f B
t1 � f W

t1

; 0 � f 1ðxÞ � 1 (6)

f 2ðxÞ ¼
Xi

t2 � f W
t2

f B
t2 � f W

t2

; 0 � f 2ðxÞ � 1 (7)

The Elitism strategy adopted at the first stage randomly selects a
number of individuals from non-dominated set into the mating
pool.

The binary tournament selection is employed at the selection

operation. Because flowshop scheduling problem is a minimiza-
tion problem, the smaller fitness value has better chance to be
selected during the evolutionary process. Whereas the knapsack
problem is a maximization problem, to solve this type of problem
we have to transform the objective value by the following
formulation:

min f 1ðxÞ
0 ¼ Max1 � f 1ðxÞ (8)

min f 2ðxÞ
0 ¼Max2 � f 2ðxÞ (9)

where the Max1 and Max2 are the maximum objective value of a
population corresponding to the first and second objective
function.

There are numerous crossover and mutation methods and two-
point crossover and moving position mutation will be applied at
the Crossover procedure and the Mutation procedure, respectively.
As claimed by Murata et al. both of them are the best approaches
Fig. 2. The flow diag
for the flowshop scheduling problems. In addition, one-point
crossover and bit flip mutation are applied in the knapsack
problem as suggested by Chu and Beasley [13].

After the first stage is finished, the algorithm initiates other
sub-populations by tournament selection from all existing
solutions generated in stage 1. If the tournament size is 10, the
initial solutions for each sub-population are randomly selected
from those solutions generated in stage 1. The fitness of these
solutions will be re-calculated according to the weight vector of
each sub-population and the best one will be selected for that
particular sub-population. Thus those selected solutions will be
further evolved in stage 2. The advantage of this approach is to
exchange the information from existing sub-populations. The
approach not only increases the convergent ability but also
exchanging the solutions among different sub-populations. Thus,
a better solution quality from SPGA II is expected. Fig. 2 depicts the
flow diagram of SPGA II.

The differences between SPGA II and SPGA are listed as follows:
1. A
ram
global Pareto archive: As soon as a new Pareto front is
found, the solution is inserted into the global Pareto archive
which can be further applied by other sub-populations in
later evolutions.
2. I
nitiate solutions in stage 2 by tournament selection from all
existing solutions: After the evolution process in stage 1, set of
Pareto fronts is obtained. In stage 2, initial solutions for these
sub-populations will be generated by selecting those better ones
from these existing solutions, which will speed up the
convergent progression.
of SPGA II.



P.-C. Chang, S.-H. Chen / Applied Soft Computing 9 (2009) 173–181 177
3. T
wo stages approach: The sub-populations at the first stage
explore specific solution space near the respective objective
function. These sub-populations will be continually evolved at
the second stage. The existing solutions are randomly selected
into the sub-populations created at stage 2 by tournament
selection. This approach enables the system to recombine
different species from different sub-population, thus a more
diversified solutions with better quality are produced.

3.4. The constraint handling methods for Knapsack problems

The model of the multidimensional Knapsack problem (MKP) or
k-dimensional Knapsack problem is defined as follows:

Maximize
Xk

i¼1

Xm

j¼1

wni pi jx j (10)

Subject to
Xm

j¼1

ri jx j � bi; i ¼ 1;2; . . . ; k: (11)

x j 2f0;1g; j ¼ 1;2;3; . . . ;m: (12)

where I is the index of knapsack, j the index of each item, pij is the
item profit of item j in knapsack I and rij is the resource weight of
item j in knapsack i.

Eq. (10) is the weighted scalar objective function of k-
dimensional nth sub-population. The k-dimensional constraint
shown in Eq. (11) is a knapsack constraint. The solutions generated
by GA may not be feasible because of the knapsack constraints.
Thus, a constraint handling method or a repair operator is needed
in handling these infeasible solutions. Both methods are widely
applied in GAs.

The constraint handling methods are divided into three
categories, including the greedy repair, penalty functions, and
permutation coding in knapsack problems [14]. Though the
constraint handling functions achieve the best result with
capacity of half the total weight [15] in the single objective 0/1
knapsack problem, it fails on the problem with more restricted
capacity. Therefore [2] used the Lamarckian implementation
scheme, which is implicitly applied to solve the multi-objective 0/
1 knapsack problems without using constraint-handling function
[16–20].

There is another repair scheme by Baldwinian implementation,
which is better than the Lamarckian implementation scheme [14].
The difference between these two is that the repair solution of
Lamarckian implementation scheme replaces the infeasible
solution while the Baldwinian implementation scheme does not.
The concept of Baldwinian implementation scheme is shown
below (Fig. 3).

The research of Ishibuchi et al. [14] compares two implementa-
tion schemes (i.e., Baldwinian and Lamarckian) and two repair
methods (i.e., maximum ratio repair and weighted scalar repair),
Fig. 3. The Baldwinian implementation [14].
the combination of Baldwinian implementation scheme and the
weighted scalar repair is the best among the four possible
combinations. In addition, the partial Baldwinian repair further
improves the solution quality with a so-called 5% rule. The rule
means that there are 5% solutions which are actually repaired.
Thus, this research will apply the result of Ishibuchi et al. [14] to
deal with infeasible solutions.

The weight vector, wni, can be directly applied in the weighted
repair method because it corresponds to the weight vector of each
sub-population. According to the weight vector, the following ratio
qj is subsequently computed and they are sorted in the ascending
order:

q j ¼
Pk

i¼1 wni pi jPk
i¼1 ri j

; j ¼ 1;2;3; . . . ;m: (13)

In Chu and Beasley [13], they applied the DROP phase and ADD
phase for each item to build their repair operator according to qj

value. The add phase distinguishes itself from most repair
operators in previous researches. Through add phase, the solution
quality should be further improved. The procedures of the repair
operator are described as follows:

Algorithm 4. Repair Operator ()

Ri: The cumulated resource weight
Pm

j¼1ri jx j of knapsack i, i = 1,
2. . .k.
bi: The maximum weight capacity of knapsack i.

1: Calculate Ri and qj

2: while (Ri > bi, for any i = 1 to k) then/* DROP phase */
3: for j = 1 to m do/* Ascending order of qj*/
4: if xj = 1 then
5: xj 0
6: Ri Ri �rij, for any i = 1 to k

7: End if
8: End for
9: End While

10: for j = m to 1 do/* ADD phase and descending order of qj*/
11: if (xj = 0) and (Ri +rij � bi, for any i = 1 to k) then
12: xj 1
13: Ri Ri +rij, for any i = 1 to k

14: End if
15: End for
The steps 2–9 are the DROP phase and the ADD phase is from
step 10–15. Step 2 continually tests the feasibility solution of
solution x. If one constraint is violated, the method removes an
item greedily in the ascending order of qj. After the DROP phase is
done, the repair operator tries to add more items into knapsack in
the descending order of qj. The Ri + rij � bi guarantees that the ADD
phase will not violate the constraints so that the repair operator
produces a feasible solution.

Finally, when SPGA II is applied to solve the knapsack problem,
Algorithm 4, i.e., Repair Operator, is used before the evaluate
objectives and fitness (i) function in Algorithm 2.

3.5. The evaluation metric for multi-objective algorithm

This research adopts D1R and generational distance (GD) to
evaluate the solution quality. The D1R is a metric, which considers
convergence and diversity at the same time [21]. After a run, an
algorithm obtains a set of Pareto solutions, which is compared with
a reference set. Thus, the D1R value is obtained. The lower the D1R

value is; the better the solution quality is. Therefore, the D1R

provides a basis for comparing the performances among different



Table 1
The suggested parameters set up and clone strategy for SPGA 2 in scheduling

problem

Factor Treatment

Crossover rate 0.9

Mutation rate 0.1

Population size 210

Fig. 4. The comparisons of different algorithms in C metric.
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algorithms in the study. The D1R is formulated as follows:

D1RðA jÞ ¼
1

jZ�j
X
y2 Z�

minfdxyjx2A jg (14)

dxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f 1ðxÞ � f 1ðyÞÞ

2 þ ð f 2ðxÞ � f 2ðyÞÞ
2

q
(15)

where Aj is the set of Pareto solution obtained by an algorithm; Z* is
the reference solution or true Pareto solution; jZ*j is the number of
reference solution.

GD is developed by Van Veldhuizen (1999) [27] and it has
several advantages such as strong out performance, complete out
performance, non-inducing, non-cardinality, and relatively rea-
sonable calculation effort [20]. The equation of GD is defined as
follows:

GDðSÞ ¼ 1

jSj
X
x2 S

minfdxyjy 2 S�g (16)

4. Experimental results

In order to validate the performance of the SPGA II, the study
takes the parallel scheduling instances1 and the knapsack instance
provided by Zitzler and Laumanns.2 In addition, the proposed
algorithm is compared with original version of SPGA and two well-
known multi-objectives GA, which are the NSGA II [1] and SPEA 2
[22]. The comparison results of different algorithms in parallel
machine scheduling problem and knapsack problem are shown in
Section 4.1 and 4.2, respectively. Finally, the design of experiment
is applied to set up the parameters in SPGA II.
1 http://ppc.iem.yzu.edu.tw/download.html.
2 http://www.tik.ee.ethz.ch/�zitzler/testdata.html.
4.1. Parallel machine scheduling problem

According to Chang et al. [23] which examines the parameter
configuration and clone strategy for sub-population genetic
algorithm, the paper directly applies these suggested results as
shown in Table 1.

We compare SPGA II with SPGA, NSGA II [1], and SPEA 2 (Zitzler,
2001), in three testing instances. Table 2 shows the minimum,
average, and maximum values of different algorithms for these
three instances. The instances include scheduling problems with
35 jobs and 10 machines, 50 jobs and 15 machines, and 65 jobs and
18 machines. From these three instances, SPGA II is superior to
SPGA, NSGA II, and SPEA 2 in minimum, average, and maximum
value of D1r metric. In addition, it is reasonable that the
computation time of SPGA-Like algorithm is less than NSGA II
and SPEA 2. The reason is that NSGA II and SPEA 2 need to calculate
the Pareto dominance which the time-complexity is O(n2). Because
the fitness evaluation of SPGA-Like is depended on the weighted
scalarization, the time-complexity is only constant time. As a
result, SPGA and SPGA II work more efficiently than NSGA II and
SPEA 2. When compared SPGA, the CPU time of SPGA II is more
Number of sub-population 40

Clone Strategy Swap mutation

Time to clone In the beginning

http://www.tik.ee.ethz.ch/~zitzler/testdata.html
http://www.tik.ee.ethz.ch/~zitzler/testdata.html
http://www.tik.ee.ethz.ch/~zitzler/testdata.html


Table 4
The parameter settings for SPEA 2 and NSGA II and relative parameter settings

Instance Population size Maximum number

of evaluations

Reference point

SPEA 2 NSGA II

2–250 120 150 75,000 [9898.86, 10107.3]

2–500 160 200 100,000 [20086.5, 20494.6]

2–750 200 250 125,000 [30130.1, 20037.2]

Table 2
The min, average, and max value of different algorithms of the three instances

Instance Algorithm Min Avg. Max CPU

35/10 SPGA 2 0.3 1.295 3.682 0.99

SPGA 3.57 5.8 9.34 0.77

NSGA II 5.16 11.82 22.22 1.47

SPEA 2 4.8 10.39 22.48 2.23

50/15 SPGA 2 1.5592 2.6272 3.6806 1.45

SPGA 8.57 9.68 10.78 1.05

NSGA II 9.68 11.74 13.79 1.46

SPEA 2 7.65 10.27 12.89 2.23

65/18 SPGA 2 5.598 11.51 16.183 1.95

SPGA 17.88 18.98 20.08 1.27

NSGA II 20.97 23.08 25.43 1.47

SPEA 2 7.7 10.3 12.9 2.29

Table 3
The suggested parameter and clone strategy for the SPGA 2 in Knapsack problem

Factor Treatment

Population size 200

Crossover rate 0.8

Mutation rate 0

Population size 200

Number of sub-population 15

Clone strategy Adjust fitness

Time to clone In the beginning

Fig. 6. The R metric of different algorithms for item 500.
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demanding because SPGA II requires extra efforts in transferring
existing solutions to a new sub-population.

4.2. Bi-Criteria knapsack problem

Based on the knapsack instance of Zitzler et al. [22], the item
250, 500, and 750 of two knapsacks are adopted in the experiment.
A preliminary experiment is done to obtain better setting for SPGA
II in the knapsack problem. The parameter settings for these
experiments can be obtained in http://ppc.iem.yzu.edu.tw/down-
load.html. The general result of the parameter setting is shown in
Table 3. Zitzler et al. [22] specify the maximum number of
evaluations for the three instances. Thus the SPGA II, SPEA 2, and
NSGA II evaluate the same specific number of solutions. Table 4
demonstrates the parameter values of the population size and the
maximum number of evaluations in different knapsack instance.

The performance evaluation along with the coverage measure C

by box-plot is presented in Fig. 4. In addition, the evaluations of R

metric are depicted from Figs. 5–7 for item 250, 500, and 750.
Fig. 5. The R metric of different algorithms for item 250.
As shown in Fig. 5, SPGA II performs much better than SPEA 2
and NSGA II in R metric. The third quartet (Q3) of SPGA II is lower
than the Q1 of SPEA 2 and NSGA II. In addition, the width between
the first quartet (Q1) and Q3 of SPGA II is smaller which means that
SPGA II outperforms SPEA 2 and NSGA II.

According to the C metric, SPGA II is covered more points by
SPEA 2 and NSGA II while SPGA II covers only small proportion of
points from SPEA 2 and NSGA II. To further analyze the result, we
plot the Pareto solutions obtained from these three algorithms as
shown in Fig. 8. The diagram shows that the Pareto solutions SPGA
II, SPEA 2 and NSGA II are all covered to each other. In addition,
some efficient points of SPEA 2 and NSGA II dominate the Pareto
solutions of SPGA II. However, the advantage of SPGA II is that it
generates wider spread of efficient solutions than SPEA 2 and NSGA
II. Thus, it is quite obvious that C metric concerns more about the
convergence effect.

Finally, Table 5 is the computation time of the three
algorithms. It shows that the SPGA II takes longer time which
Fig. 7. The R metric of different algorithms for item 750.

http://ppc.iem.yzu.edu.tw/download.html
http://ppc.iem.yzu.edu.tw/download.html


Fig. 8. The Pareto fronts of three different algorithms in a single run.

Table 5
Computation time of the three algorithms (s)

Instance Algorithm CPU

2–250 SPGA 2 9.19

NSGA II 0.41

SPEA 2 0.63

2–500 SPGA 2 17.40

NSGA II 0.43

SPEA 2 0.62

2–750 SPGA 2 29.65

NSGA II 0.42

SPEA 2 0.65
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is because the SPGA 2 uses a repair operator to deal with the
constraint handling while NSGA II and SPEA 2 which implicitly
used the Lamarckian implementation scheme instead of using a
repair operator. It is obviously that although this repair operator
proposed by Chu and Beasley [13] could improve the solution
quality; the repair operator will causes significant computa-
tional times.

5. Conclusions

This paper extends SPGA algorithm with a global Pareto archive
technique and a two-stage approach to solve the multi-objective
problems. In the first stage, the areas next to the two single
objectives are searched and solutions explored around these two
extreme areas are reserved in the global archive for later
evolutions. Then, in the second stage, larger searching areas
except the middle area are further extended to explore the solution
space in finding the near-optimal frontiers. In order to know which
factors may influence the solution quality and to obtain better
parameter configurations for SPGA II, a two-stage design of
experiment (DOE) is employed.

The first stage is the screening experiment, which considers
several factors at the same time. Because the number of
combinations is high, it is time-consuming to study all the
combinations. Instead, the research uses the 26�1

IV design, which
greatly decreases the experimental efforts. The second stage
is to explore more detailed parameter configuration. Since
there are only two factors considered here, the study applies the
full factorial design to provide more accurate experiment
results.

Finally, through extensive experimental results, SPGA II does
outperform SPGA (There is only one exception, i.e., the first
instance, that the performance of SPGA 2 is not better than the
SPGA), NSGA II, and SPEA 2 in the parallel scheduling problems
and knapsack problems. It shows that the approach improves the
sub-population genetic algorithm significantly. It may be of
interests for researchers in solving multi-objective combinatorial
problems.
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