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Recently, a wealthy of research works has been dedicated to the design of effective and effi-
cient genetic algorithms in dealing with multi-objective scheduling problems. In this
paper, an artificial chromosome generating mechanism is designed to reserve patterns of
genes in elite chromosomes and to find possible better solutions. The artificial chromo-
some generating mechanism is embedded in simple genetic algorithm (SGA) and the
non-dominated sorting genetic algorithm (NSGA-II) to solve single-objective and multi-
objective flowshop-scheduling problems, respectively. The single-objective problems are
to minimize the makespan while the multi-objective scheduling problems are to minimize
the makespan and the maximum tardiness. Extensive numerical studies are conducted and
the results indicate that artificial chromosomes embedded with SGA and NSGAII are able to
further speed up the convergence of the genetic algorithm and improve the solution qual-
ity. This promising result may be of interests to industrial practitioners and academic
researchers in the field of evolutionary algorithm or machine scheduling.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the operations research literature, flowshop scheduling is one of the most well studied problems in the area of sched-
uling. Garey et al. [14] prove that the permutation flowshop scheduling problem is NP-complete. Moreover, if the flowshop
scheduling problem with multiple objectives is considered, it becomes even more complicated. Therefore, researchers start
to develop effective heuristics and meta-heuristics to solve this problem. Among the meta-heuristics, genetic algorithms at-
tract a lot of attention. Jaszkiewicz [18], Ishibuchi et al. [17], Reeves [28], Murata et al. [24], and Chen et al. [10] do the pio-
neering work by applying genetic algorithms in solving flowshop scheduling problems. Reeves and Yamada [27], Wang and
Zhang [29], Wang et al. [31], Chang et al. [9], hybridize other techniques with genetic algorithms to improve the genetic
search. Numerous multi-objective algorithms are also proposed, such as segregative genetic algorithms by Affenzeller [1]
which combine populations when the diversity of a population was decreased; multisexual genetic algorithm by Lis and
Eiben [22] which assigns each chromosome with different sex and it restricts only different sex that can be mated; Hierar-
chical Fair Competition Model by Hu et al. [16] which divides the population into a hierarchical structure; genetic local
search by Jaszkiewicz [18] which uses a weighted sum of multi-objective as fitness and randomly sets the weight values
while two parent solutions are selected. This genetic local search shows better performance in a reasonable computational
time; MO Particle Swam Optimization by Coello et al. [12] and Nojima et al. [25]; two-phase subpopulation GA by Chang
. All rights reserved.
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et al. [6] which simultaneously applies several subpopulation and assigns the weight for these subpopulation to explore the
solution space uniformly; Mining Gene subpopulation GA by Chang et al. [5] which employs a mining gene technique based
on the subpopulation genetic algorithm; and multi-objective Tchebycheff based genetic algorithm by Alves and Almeida [2]
which proposes a similar idea to the two-phase subpopulation genetic algorithm [6]. Finally, the latest approach is to apply
the Immune algorithm to solve multi-objective problems [36].

NSGA-II in Deb et al. [13] and SPEA2 in Zitzler et al. [32] are two well-known algorithms in solving multi-objective opti-
mization problems. The main characteristic of NSGA-II is to sort the chromosomes into different ranks. During the selection
procedure, while there are two solutions from the same rank, a crowding distance is applied to determine which one is to be
selected. As for the fitness assignment of SPEA2, it is based on the number of dominated solutions from Pareto set and from
each chromosome. For a complete review, please refer to Jones et al. [19]. Therefore, different EMO algorithms are proposed
with the goal to further improve the efficiency and solution quality of the algorithm. In recent years, evolutionary algo-
rithm with probability models (EAPM) is the most important branch of GA. The reason is that the problem-independent
crossover operator may either break the building block of chromosomes or does not mix the genetic information properly
[33]. Thus, EAPM employs the probability model to generate new chromosomes instead of using crossover or mutation
operator.

In this research, we take a close look at the evolutionary process for a permutation flowshop scheduling prob-
lems and come out with the new idea of generating artificial chromosomes to further improve the solution quality of the
genetic algorithm. To generate artificial chromosomes, it depends on the probability of each job at a certain position. The
idea is originated from Chang et al. [7,8] which propose a methodology to improve GAs by mining gene structures within
a set of elite chromosomes generated in previous generations. Instead of replacing the crossover operator and mutation oper-
ator due to efficiency concern, the proposed algorithm is embedded into SGA and NSGA-II. The probability model acquired
from the elite chromosomes will be integrated with the genetic operators in generating artificial chromosomes, i.e., off-
springs which can be applied to enhance the efficiency of the proposed algorithm. Apart from our previous researches, Harik
et al. [15], Rastegar and Hariri [26], Zhang et al. [30] have discussed and proved the genetic algorithm which is based on the
probability models. For a complete review of the relative algorithms discussed above, please refer to Larrañaga and Lozano
[21], Lozano et al. [23], and Pelikan et al. [33]. In most recent works of EAPM, they all concentrate on solving continue prob-
lems rather than discrete problems. There are only few researches [7,30,34,38–40] in applying EAPM to resolve discrete
problems.

In summary, this research proposes an artificial chromosome generating mechanism (AC), which is embedded in simple
genetic algorithm (SGA) and in non-dominated sorting genetic algorithm II (NSGA-II), which are called ACGA and ACNSGA-II
in solving the single-objective and multi-objective flowshop scheduling problems, respectively. By examining the evolution-
ary process, a fitness based gene probability matrix is developed to guide the searching procedure. In addition, the proposed
approach is also applied to illustrate how insights gained which can be further converted into our understanding of EA’s
behaviors in developing new and better techniques. The proposed algorithm will be tested on flowshop scheduling problem
in minimizing makespan for single-objective problems and in minimizing makespan and maximum tardiness for the multi-
objective problems. The study adopts the flowshop scheduling instances provided by Reeves [28] and Ishibuchi et al. [17] for
benchmark tests.

The rest of the research is organized as follows: Section 2 gives the problem statement, and Section 3 describes the meth-
odology of generating artificial chromosomes. Section 4 explains the detail procedures of the proposed algorithm. In Section
5, extensive experiments are conducted to test the performance of the proposed algorithm in single-objective and multi-
objective scheduling problems. Finally, the conclusion is discussed and future researches are also provided.
2. Problem statement

Flowshops are useful tools in modeling manufacturing processes. A permutation flowshop is a job processing facility,
which consists of several machines and several jobs to be processed on the machines. In a permutation flowshop all jobs
follow the same machine or processing order. Our objectives are to find a set of compromise solutions so that the makespan
and maximum tardiness are minimized.

The flowshop scheduling problem is a typical assembly line problem where n different jobs have to be processed on m
different machines. All jobs are processed on all the machines in the same order. The processing times of the jobs on ma-
chines are fixed irrespective of the order in which the processing is done. The problem is characterized by a matrix
P = (pij), i = 1. . . n, j = 1. . . m, of processing times. Each machine processes exactly one job at a time and each job is processed
on exactly one machine at a time. The problem then is to find a sequence of jobs such that the makespan that is the com-
pletion time of the last job in the sequence on the last machine is minimized. If Ci denotes the completion time for job i, then
we are trying to minimize max Ci. There are many other criterions that can be considered for optimization. We refer the read-
er to Bagchi [3] for a detailed discussion of multi-objective scheduling using GA. For details of the flowshop and other sched-
uling and sequencing problems we refer the reader to Baker [4].

The flow shop scheduling can be formerly defined as follows: if p(i,j)is the processing times for job i on machine j, and a
job permutation {p1,p2, . . . ,pn}, where there are n jobs and m machines, then the completion times C(pi, j) is calculated as
follows:
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Cðp1;1Þ ¼ pðp1;1Þ
Cðpi;1Þ ¼ Cðpi�1;1Þ þ pðpi;1Þ for i ¼ 2; . . . ; n

Cðp1;1Þ ¼ Cðp1; j� 1Þ þ pðp1; jÞ for j ¼ 2; . . . ;m

Cðpi; jÞ ¼maxfCðpi�1; jÞ;Cðpi; j� 1Þg þ pðpi; jÞ for i ¼ 2; . . . ; n; j ¼ 2; . . . ;m:

ð1Þ
The makespan is finally defined as
CmaxðpÞ ¼ Cðpn;mÞ: ð2Þ
Then, the objective is to find a permutation p* in the set of all permutations P such that
CmaxðpÞ 6 CmaxðpÞ 8p 2 P: ð3Þ
A more general flowshop scheduling problem can be defined by allowing the permutation of jobs to be different on each
machine. However, what work has been done to show on the more general flow shop scheduling problem has tended to
small improvement in solution quality over the permutation flowshop scheduling problems (PFSP) while increasing the
complexity of the problem substantially. The size of the solution space increases from n! to (n!)m. Other objective functions
for the PFSP also received a lot of attentions. For example, the mean flow-time (the time a job spends in process), or the mean
tardiness (assuming some deadline for each job) are to be minimized. Other real problems from the manufacturing indus-
tries such as jobs may have non-identical release dates, there may be sequence-dependent setup times, and there may be
limited buffer storage between machines and so on. These characteristics of the real world problems will make the problem
more complicated to be solved within a reasonable time frame. However, GA approaches provide a more realistic view to the
problem. Since it can generate alternatives of sequences (in the evolving process each chromosome representing a feasible
solution to the problem) to the decision maker, a more applicable sequence can be decided to solve the current problem with
satisfactory results.
3. Generating artificial chromosomes

During the evolving process of the GA, all the chromosomes will converge slowly into certain distribution after the final
runs. If we take a close look at the distribution of each gene in each assigned position, we will find out that most the genes
will be converged into certain locations which means the gene can be allocated to the position if there is a probabilistic ma-
trix to guide the assignment of each gene to each position.

Artificial Chromosomes are developed according to this observation and a dominance matrix will record this gene distri-
bution information. The dominance matrix is transformed into a probability matrix to decide the next assignment of a gene
to a position. Consequently, AC is integrated into the procedure of genetic algorithm and it attends to improve the perfor-
mance of genetic algorithm. The primary procedure is to collect gene information first and to use the gene information to
generate artificial chromosomes. Before collecting the gene information, AC collects the chromosomes whose fitness is better
by comparing the fitness value of each chromosome with average fitness value of current population. Then artificial chro-
mosome is embedded into the genetic algorithm. The detailed steps are described in the following:

Step 1: To convert gene information into dominance matrix: Before we collect gene information, selection procedure is
performed to select a set of chromosomes. Then, for a selected chromosome, if job i exists at position j, the frequency
is added by 1. To demonstrate the working theory of the artificial chromosome generation procedure, a 5-job problem
is illustrated. Suppose there are ten sequences (chromosomes) whose fitness is better than average fitness. Then, we accu-
mulate the gene information from these ten chromosomes to form a dominance matrix. As shown in the left-hand side of
Fig. 1, there are two job 1, two job 2, 2 two 3, one job 4, and three job 5 on position 1. Again, there are 3 job 1, 1 job2, 2
job3, 3 job4, and 1 job5 on position 2. The procedure will repeat for the rest of the position. Finally, the dominance matrix
contains the gene information from better chromosomes is illustrated in the right-hand side of Fig. 1.
Step 2: Generate artificial chromosomes: As soon as we collect gene information into dominance matrix, we are going to
assign jobs onto the positions of each artificial chromosome. The assignment sequence for every position is assigned ran-
domly, which is able to diversify the artificial chromosomes. After we determine the assignment sequence, we select one
job assigned to each position by roulette wheel selection method based on the probability of each job on this position.
After we assign one job to a position, the job and position in the dominance matrix are removed. Then, the procedure
continues to select the next job until all jobs are assigned. Assume the first job is to be assigned at position 3 in the begin-
ning, which is shown in Fig. 2. The frequency of each job at position 3 is [1, 3, 1, 1, and 4] starting from job 1 to job 5.
Because the number of total frequency is 10, the corresponding probability for job 1 is 1/10; job 2 is 3/10, and so on. Then,
we accumulate the probability from job 1 to 5 and roulette wheel select is able to apply this accumulated probability. This
information is shown at the last column of the Fig. 2. If a random probability 0.6 is generated, then job 4 is assigned to
position 3.
Step 3: Replacement strategy: After embedding artificial chromosomes into the population, we use l + k strategy, which
combines previous parent population and artificial chromosomes. Then, we select better l chromosomes from the com-
bined population. Consequently, better solutions are preserved to the next generation.
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Fig. 1. To collect gene information and converted into a dominance matrix.

Pos. 3 Prob.

1 1 1/10

2 3 4/10

3 1 5/10

4 1 6/10

5 4 10/10

Job

1/10

3/10

1/10

1/10

4/10
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Fig. 2. The probability and accumulated probability of each job for position 3.
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During the assignment of each job to a specific position, the dominance matrix will be updated continuously. For exam-
ple, after assigning job 4 at position 3 and suppose position 2 is the next one to be assigned. An updated dominance matrix is
shown in Fig. 3.
Updated Dominance Matrix

Position

1 2 3 4 5

1  2  3  1  2  2  

2  2  1  3  2  2  

3  2  2  1  3  2  

4  1  3  1  2  3  

5  3  1  4  1  1  

Job

Fig. 3. The updated dominance matrix after assigning job 4 at position 3.
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Fig. 4. The probability and accumulated probability of each job for position 2.
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Next, the probability of each job is recalculated as well as the accumulated probability as shown in Fig. 4. Then, a roulette
wheel selection method will select a job based on the probability of each job. Consequently, the algorithm iteratively assigns
jobs to vacant positions until all jobs are assigned.

4. Implementations of AC with genetic algorithm and NSGA-II

AC is embedded with SGA and NSGA-II algorithms to further improve the solution quality of these two algorithms. How-
ever, in order to provide a good quality of artificial chromosomes the timing to collect this gene information will be very
crucial. Since during the early stage of evolutionary process, the chromosomes generated may not yet converge well into
a certain quality, it is not a good idea to collect gene information at this stage. The collecting procedure may have to hold
until some generations after. Therefore, the first parameter startingGen determines the time to collect gene information
and generate AC. Secondly, AC is not generated every generation because it is very time-consuming; normally AC is gener-
ated under a pre-determined interval, ex., every 50 generations. This is to make sure that the procedure will not converge
prematurely and to save computational times.

The next section explains the integration of AC with SGA. Section 4.2 introduces the NSGA II, and Section 4.3 describes the
procedures of the ACNSGA-II algorithm. Finally, in order to verify the solution quality obtained by the proposed algorithm,
there are two performance metrics employed to evaluate the solution quality, which are explained in Section 4.4.

4.1. Embedding AC with SGA

The artificial chromosome operator has two parameters, i.e., startingGen and generation interval, to be setup. The detail
procedures of the artificial chromosome operator are described as follows:

MainProcedure

Population: The population used in the genetic algorithm
Generations: The number of generations
startingGen: It determines when to collect gene information and to generate AC
interval: The generation interval to generate artificial chromosomes
1. Initiate Population
2. counter 0

3. while counter < generations do
4. Evaluate Objective and Fitness()
5. FindEliteSolutions(i)
6. if counter < startingGen or counter % Interval! = 0 do
7. Selection with Elitism Strategy()
8. Crossover()
9. Mutation()
10. TotalReplacement()
11. else
12. CalculateAverageFitness()
13. CollectGeneInformation()
14. GenerateArtificialChromsomomes()
15. l + k Replacement()
16. End if
17. counter counter + 1
18. end while
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The CollectGeneInformation() procedure is described at the step 1 of Section 3, which collects gene information from bet-
ter chromosomes depended on the average fitness of the population. Generate-artificial-chromsomomes() follows the step 2
of Section 3, which uses the probability selection to assign job onto each positions. Finally, after we evaluate the fitness of
artificial chromosomes, the parent chromosomes and artificial chromosomes are combined into together, whose population
size is l + k. Then, we select the size of l from the l + k chromosomes deterministically. The new population becomes the
parent chromosomes and the proposed algorithm employs it to continually evolve. Consequently, better solutions are pre-
served to the next generation.
4.2. Introduction of NSGA-II

Among all the multi-objective algorithms, the major difference is the fitness assignment. The fitness assignment of NSGA-
II [13] is depended on the Pareto dominance of ranking value. The lower the ranking level, the better solution quality is.
When two solutions are selected from the same rank, NSGA-II adopts a crowding distance to measure the density of indi-
viduals in solution space. The following remarks NSGA-II that can be divided in three parts:

1. Non-dominated sorting: N populations and their N subpopulations first compose of a 2N population and then they are
sorted according to each individual’s domination situation.

2. Crowding distance computation: Crowding distance computation is used to decrease the competitive ability of the non-
dominated solutions with more crowding distance.

3. Crowded computation operator �n: This operator is used as a selection tool. The selection is based on two comparison
rules: (1) the smaller level the individual belongs to, the better the solution is; (2) an individual with greater crowding
distance has better solution because the area it belongs to is less crowded.

Because the concept of NSGA-II is simple, it is the most well-known multi-objective algorithm. The next section explained
how AC works with NSGA-II.
4.3. Embedding AC with NSGA-II

After the introduction of NSGA-II, this section describes how the AC is embedded with NSGA-II. The main steps of artificial
chromosome embedded in NSGA-II are explained as follows:

MainProcedure

Population: The population used in the genetic algorithm
Generations: The number of generations
startingGen: It determines when does the AC works
interval: The frequency to generate artificial chromosomes
1. Initiate Population
2. ConstructInitialPopulation(Population)

3. counter 0
4. while counter < generations do
5. Evaluate Objectives ()
6. FindEliteSolutions(i)
7. if counter < startingGen or counter % interval != 0 do
8. Perform NSGA II()
9. else
10. Selection()
11. CollectGeneInformation()
12. GenerateArtificialChromsomomes()
13. l + k Replacement()
14. End if
15. counter counter + 1
16. end while

The only differences are that the selection operator and the source of collecting gene information. In the single-
objective problem, binary tournament selection is employed and NSGA-II applies the non-dominant ranking and crowded
distance. In addition, in order to keep the diversity gene information in multi-objective problems, all the chromo-
somes are used to build the probability model while only better chromosomes are employed in building the probability
model.
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Finally, because the flowshop scheduling problem with minimizing makespan (ZTC) and maximum tardiness (ZTT) are to
be dealt with in this paper, the objective function ‘‘Evaluate Objectives ()” will calculate these two objective values for the
corresponding chromosomes or solutions. The equations of these two objectives are defined below.
1 http
ZTC ¼maxfF1; F2; . . . ; Fmg; ð5Þ
ZTT ¼maxfT1; T2; . . . ; Tmg; ð6Þ
where Fi is the makespan on each machine and Ti = max{Ci � di,0}

4.4. Performance metric

The research adopts D1R and C metric to evaluate the solution quality for the multi-objective problems. D1R is a metric,
which considers the convergence and diversity at the same time according to Knowles and Corne [20]. After a test run, the
algorithm will obtain a set of Pareto solutions, which are compared with a reference set. Thus, D1R value is obtained. The
lower D1R value is, the better the solution quality is. Therefore, the D1R provides a basis for comparing the performance
among different algorithms in the study. The equation of D1R is listed as follows:
D1RðAjÞ ¼
1
jZ�j

X
y2Z�

minfdxyjx 2 Ajg; ð7Þ

dxy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðf �i ðyÞ � fiðyÞÞ2
vuut ; ð8Þ
where Aj is a set of Pareto solution obtained by an algorithm; Z* is the reference solution or true Pareto solution; jZ*j is the
number of reference solution.

C metric is applied to compare two solution sets A and B by transforming the relationship (A, B). If C(A, B) is 1, then all the
solutions of algorithm B is covered by A set and vice versa. This evaluation value is between 0 and 1. The equation of C metric
is listed as follows:
CðA;BÞ, fb 2 Bj9a 2 A; a � bgj j
jBjc

ð9Þ
5. Experimental tests

This section presents the experiments of combining AC with GA in single objective problems and NSGA-II in multi-objec-
tive problems, which are named ACGA and AC-NSGAII, respectively. Standard benchmark instances of single-objective flow-
shop problems are obtained from http://mscmga.ms.ic.ac.uk by Reeves [28], which minimizes the makespan. When we
solved the multi-objective problems, the instances are provided by Ishibuchi1 et al. [17] where the first objective is makespan
and the second objective is maximum tardiness. Both of them are shown in the following sections:
5.1. Single-objective flowshop problems

Simple genetic algorithm (SGA) and ACGA are used to solve the 21 problems named Rec01, Rec03–Rec41. Both of them
are compared with hybrid genetic algorithm (HGA) from literature [41] which is the case of infinite buffer. The total number
of examined solutions is n*m* 50 where n is the number of jobs and m is the number of machines. The population size, cross-
over rate, and mutation rate of SGA and ACGA are the same, which are 100, 0.9, and 0.5, respectively. There are two param-
eters of ACGA, which are startingGen and interval. The first parameter ‘‘startingGen” represents that artificial chromosome
generation mechanism starts to activate from the ‘‘Starting Generation”. The second parameter ‘‘interval” denotes how long
the artificial chromosome generation mechanism has to wait to collect higher quality chromosomes. Table 1 is the parameter
configuration of ACGA from design of experiments.

The ANOVA Table indicates that factor interval is significant. As shown in Figs. 5 and 6, the starting generation of ACGA is
set up as 3/10 of the total generations and every 1/10 of the total generations are set up as the interval.

As soon as the parameters of ACGA are set up, the average performance measures of ACGA and SGA are shown in Table 2.
As shown in Table 2, ACGA outperforms SGA in every instance which shows the superiority of AC in further speeding up the
convergence of the global searching capability of GA. The average error ratios of these three algorithms including HGA are
summarized in Table 3. As shown in Table 3, HGA only performs better than SGA in larger size instances such as Rec31–
Rec41. However, ACGA outperforms SGA and HGA in all cases. Thus, ACGA is superior to SGA and HGA in the single-objective
problems.
://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e/index.html.

http://mscmga.ms.ic.ac.uk
http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e/index.html
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Table 1
Design of experiments for ACGA

Source DF Seq SS Adj SS Adj MS F P

Instance 20 4E+09 4E+09 2E+08 468,102 0.000
StartingGen 1 22 22 22 0.05 0.822
Interval 1 2951 2951 2951 6.74 0.009
Instance*startingGen 20 18,109 18,109 905 2.07 0.004
Instance*interval 20 6463 6463 323 0.74 0.790
StartingGen *interval 1 47 47 47 0.11 0.744
Instance* startingGen*interval 20 16,575 16,575 829 1.89 0.010
Error 2436 1E+06 1E+06 438
Total 2519 4E+09
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5.2. Multi-objective flowshop problems

This section discusses experimental results of the proposed method which is embedded in NSGA-II in solving the multi-
objective flowshop problems. There are four instances whose job sizes are 20, 40, 60, and 80 jobs and each of them contains
20 machines in the flowshop. The stopping criterion is to examine 100, 000 solutions totally, i.e., to generate 100,000 chro-
mosomes. In ACNSGA-II, two parameters, i.e., startingGen and interval, have to be set up before hand. Consequently, a param-
eter configuration experiment by design of experiment is implemented. The following ANOVA Table indicates that there is
no significant difference in different levels of these two parameters. As a result, startingGen and intervals are set up as 500
and 40, respectively according to the design of experiments for AC-NSGAII as shown in Table 4.

According to the design of experiment by Chen [11], the parameters’ settings of NSGA-II in crossover rate, mutation rate,
and population size are set up to 1.0, 1.0, and 100, respectively. The proposed algorithm, i.e., ACNSGA-II, is compared with
NSGA-II using D1r and C metrics. Table 5 compares the performance of NSGA-II and ACNSGA-II in D1r metric and Fig. 7 pro-
vides results of these two methods in C metric.



Table 2
Average objective values of SGA and ACGA in solving standard benchmark

Instance n, m Opt SGA ACGA

Min Mean Max Min Mean Max

rec01 20, 5 1247 1249 1252.2 1280 1249 1249 1249
rec03 20, 5 1109 1109 1112.3 1117 1109 1110.9 1116
rec05 20, 5 1242 1245 1251.2 1273 1245 1245.6 1262
rec07 20, 10 1566 1584 1586.8 1626 1566 1578 1584
rec09 20, 10 1537 1538 1568.7 1589 1537 1552.5 1574
rec11 20, 10 1431 1431 1445.4 1476 1431 1438.6 1469
rec13 20, 15 1930 1936 1959.8 1981 1935 1951.3 1981
rec15 20, 15 1950 1961 1980.5 2011 1950 1966.9 1995
rec17 20, 15 1902 1919 1957.4 2009 1911 1938.5 1961
rec19 30, 10 2093 2124 2152.3 2197 2099 2130.9 2182
rec21 30, 10 2017 2050 2063.3 2103 2046 2052.2 2081
rec23 30, 10 2011 2041 2070.6 2104 2021 2047.9 2079
rec25 30, 15 2513 2554 2595.5 2660 2545 2576.7 2629
rec27 30, 15 2373 2402 2438.9 2484 2396 2422.9 2468
rec29 30, 15 2287 2324 2367.2 2423 2304 2349.7 2412
rec31 50, 10 3045 3124 3185.3 3264 3105 3155.7 3261
rec33 50, 10 3114 3140 3180.9 3231 3140 3150.2 3173
rec35 50, 10 3277 3277 3308.9 3370 3277 3281.5 3291
rec37 75, 20 4951 5210 5274.7 5351 5193 5254.6 5340
rec39 75, 20 5087 5266 5338.4 5442 5276 5338.7 5427
rec41 75, 20 4960 5215 5289.4 5356 5208 5279.8 5342

Table 3
Average error ratios of these three algorithms (%)

Instance SGA ACGA HGA Instance SGA ACGA HGA

rec01 0.42 0.16 1.36 rec23 2.96 1.83 3.47
rec03 0.3 0.17 1.35 rec25 3.28 2.53 3.69
rec05 0.74 0.29 0.4 rec27 2.78 2.1 2.8
rec07 1.33 0.76 1.91 rec29 3.51 2.74 3.92
rec09 2.06 1.01 2.26 rec31 4.61 3.64 3.88
rec11 1.01 0.53 3.09 rec33 2.15 1.16 2.08
rec13 1.54 1.1 2.08 rec35 0.97 0.14 0.21
rec15 1.56 0.87 1.66 rec37 6.54 6.13 4.77
rec17 2.91 1.92 3.36 rec39 4.94 4.95 3.62
rec19 2.83 1.81 2.85 rec41 6.64 6.45 5.53
rec21 2.3 1.74 2.5 Overall 2.64 2 2.7

Table 4
Design of experiments for AC-NSGAII

Source DF Seq SS Adj SS Adj MS F P

Size 3 1E+07 1E+07 3E+06 793.79 0
Starting 1 550 550 550 0.13 0.723
Interval 1 4700 4700 4700 1.08 0.3
Size*Starting 3 10240 10240 3413 0.78 0.505
Size*Interval 3 7551 7551 2517 0.58 0.631
Starting*Interval 1 203 203 203 0.05 0.829
Size*Starting *Interval 3 5898 5898 1966 0.45 0.717
Error 464 2E+06 2E+06 4368
Total 479 1E+07

Table 5
The comparison of NSGA-II and ACNSGA-II

Size NSGA-II ACNSGA-II

Min Mean Max Min Mean Max

20 23.33 43.05 81.74 25.2 45.23 86.46
40 101.95 145.03 252.22 92.67 156.9 212.24
60 217.4 334.3 452 222.1 320.3 473.6
80 242.3 425 682.7 238.9 422.7 711.6
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Fig. 7. The C metric performance of ACNSGA-II and NSGA-II under different job sizes.

Fig. 8. A single run of the non-dominated solutions by NSGA-II and AC-NSGA-II.

P.-C. Chang et al. / Applied Mathematics and Computation 205 (2008) 550–561 559



560 P.-C. Chang et al. / Applied Mathematics and Computation 205 (2008) 550–561
In Table 5, NSGA-II performs a little bit better for small size problems while ACNSGA-II is much better in dealing these
large size problems. In other words, ACNSGA-II is more effective in speeding up the convergence when the problem size
is large. The minimum value in D1r metric provided by these two methods also indicates that ACNSGA-II is quite effective
in further improving the solution quality of the problems. Besides, C metric shows ACNSGA-II covers more solutions of
NSGA-II in job size 60 and 80. However, there is no difference in smaller instance, including job 20 and job 40. Consequently,
AC-NSGAII is able to perform well in larger size problem from these numerical results. Finally, Fig. 8 is the non-dominated
solutions of a single run by NSGA-II and AC-NSGA-II. The results show that the proposed algorithm works effectively in large
size problems.

6. Conclusions and future researches

In this paper, an artificial chromosome generating mechanism is proposed, which can be classified in the class of Evolu-
tionary Algorithm with Probability Models. Previous researches attempt to replace crossover operator and mutation opera-
tors. However, this research embedded the gene based probability models in SGA and NSGA-II and the experimental results
show that the proposed mechanism is promising in dealing with flowshop scheduling problems in single-objective and mul-
ti-objective problems. In our experience, this hybrid method does not have a heavy burden in computational times and the
proposed method functions more efficiently than EAPM without using crossover and mutation operator. In the near future,
properties and special characteristics of generating artificial chromosomes will be further investigated. They are still open
problems in how and when to generate effective artificial chromosomes in speeding up the convergence process while still
maintaining the global searching capability. It is also another interesting subject as to generate diversified artificial chromo-
somes in improving the diversity of the population. These diversified AC can help GA in searching or exploring different solu-
tion spaces thus providing possibility in discovering a solution with better quality. In addition, the gene based probability
model applied in generating AC is able to determine the mutation rate as in [35] and to design competent crossover and
mutation operators as in [37]. Finally, different applications of the AC generating mechanism are also possible in continuous
and other combinatorial optimization problems.
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