
Ann Oper Res
DOI 10.1007/s10479-008-0489-9

Generating artificial chromosomes with probability
control in genetic algorithm for machine scheduling
problems

Pei-Chann Chang · Shih-Hsin Chen · Chin-Yuan Fan ·
V. Mani

© Springer Science+Business Media, LLC 2008

Abstract In this paper, a novel genetic algorithm is developed by generating artificial chro-
mosomes with probability control to solve the machine scheduling problems. Generating
artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary
Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are gen-
erated by a probability model that extracts the gene information from current population.
ACGA is considered as a hybrid algorithm because both the conventional genetic operators
and a probability model are integrated. The ACGA proposed in this paper, further employs
the “evaporation concept” applied in Ant Colony Optimization (ACO) to solve the permu-
tation flowshop problem. The “evaporation concept” is used to reduce the effect of past
experience and to explore new alternative solutions. In this paper, we propose three differ-
ent methods for the probability of evaporation. This probability of evaporation is applied as
soon as a job is assigned to a position in the permutation flowshop problem. Experimental
results show that our ACGA with the evaporation concept gives better performance than
some algorithms in the literature.
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1 Introduction

Genetic algorithm is basically an implicit probability model (Baluja and Davies 1998),
which mainly preserves better chromosomes by selection; however, a better building block
is not guaranteed for preserving better chromosomes. It is because gene is evaluated within
a chromosome (Harik et al. 1999). There are some researchers, such as Glover and Kochen-
berger (1996), who argued that some gene structures are similar in some better chromosomes
from the traveling salesman problem (TSP) of Lin and Kernighan (1973) which supports
this idea. Their experimental result shown that there were 85% segments in any two local
optimal solutions were identical. Therefore, among all the branches of genetic algorithms,
Evolutionary Algorithms Based on Probabilistic Models (EAPM) fulfills the gap of genetic
algorithm. EAPM is different from past genetic algorithm in extracting chromosomes struc-
ture from parents, which is the exact position of each gene and then to produce offspring.
This concept stemmed from Ackley (1987) and Syswerda (1993) and then was developed
by Baluja (1995), Baluja and Davies (1998), Harik et al. (1999), Muhlenbein and Paaß
(1996), Baraglia et al. (2001), Larrañaga and Lozano (2002), Zhang et al. (2005), Raste-
gar and Hariri (2006), and Lozano (2006). These algorithms are classified in Estimation of
Distribution Algorithm (EDA) by Zhang et al. (2005).

Based on the authors’ previous research Chang et al. (2008b), an artificial chromosome
Genetic Algorithm (ACGA) was proposed which is related to some EAPM methods. The ar-
tificial chromosomes are generated by probability model that extracts the gene information
from current population. The main difference is the ACGA that can be treated as a hybrid
algorithm because the conventional genetic operators and probability model are integrated
into together. From the previous results in single machine scheduling problem which mini-
mizes the earliness/tardiness penalty with distinct due date, ACGA is able to produce a very
satisfactory results.

In this paper, ACGA is not only applied to solve the permutation flowshop problem but
also employs an evaporation concept, which is widely used in Ant Colony Optimization
(ACO), as a probability control tool. The pheromone evaporation mitigates past experience
so that it increases the diversity and to prevent stagnation of searching process for latter-
on constructed solutions (Corne et al. 1999). In addition, it is useful to prevent pheromone
concentration in optimal path from being excessively (Sim and Sun 2003). Therefore, since
none of the EAPM papers discusses this issue, this paper proposes three different methods
to evaporate the probability as soon as a job is assigned to a position. The paper is organized
as follows: Sect. 2 the literature survey reviewing the papers in single machine scheduling,
flowshop scheduling and Evolutionary Algorithm with Probabilistic Models. Section 3 is
the methodology which includes the ACGA algorithm and the evaporation methods. The
experimental results are shown in Sect. 4 and the conclusion is drawn in Sect. 5.

2 Literature survey

2.1 The single machine scheduling problems with earliness and tardiness penalties

As a generalization of weighted tardiness scheduling, the problem is strongly NP-hard in
Lenstra et al. (1975). The earlier works in this problem was due to Chang (1999), Chang and
Lee (1992a, 1992b), Wu et al. (1993). Both exact algorithm and heuristic approaches have
been proposed. Among the exact approaches, branch-and-bound algorithms were presented
by Abdul-Razaq and Potts (1988), Li (1997), Liaw (1999). The lower bounding procedure
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of Abdul-Razaq and Potts (1988) was based on the sub-gradient optimization approach and
the dynamic programming state-space relaxation technique, whereas Li (1997) and Liaw
(1999) used Lagrangian relaxation and the multiplier adjustment method. Valente and Alves
(2007) presented a branch-and-bound algorithm based on a decomposition of the problem
into weighted earliness and weighted tardiness sub-problems. Two lower bound procedures
were presented for each sub-problem, and the lower bound for the original problem was then
simply the sum of the lower bounds for the two sub-problems. Later on, Akturk and Ozdemir
(2001), Sourd and Kedad-Sidhoum (2003), Sourd and Kedad-Sidhoum (2007), Jouglet et al.
(2008) developed various dominance rules to solve the problem. These rules were employed
in branch-and-bound algorithm which enhances the fathoming procedure or to be combined
with other meta-heuristic, such as Chang et al. (2009) Integrated the DPs with GA in the
problem of earliness/tardiness scheduling problems.

Among the heuristics, Ow and Morton (1989) developed several dispatch rules and a
filtered beam search procedure. In Valente and Alves (2005), they presented an additional
dispatch rule and a greedy procedure, and also consider the use of dominance rules to fur-
ther improve the schedule obtained by the heuristics. A neighborhood search algorithm was
also presented by Li (1997). Belouadah et al. (1992) dealt with the similar problem with
a different objective in minimizing the total weighted completion time. Apart from these
algorithms, some metaheuristics were developed (Michalewicz et al. 1996; Lee et al. 1997;
Dimopoulos and Zalzala 2000). For example, Chang et al. (2008a) developed a new al-
gorithm, termed as Electromagnetism-Like algorithm, dealing with the single machine
scheduling problems with the consideration of earliness/tardiness. Electromagnetism-like
algorithm was originally proposed by Birbil and Fang (2003), which was able to solve
continuous problem while Electromagnetism-like algorithm should corporate random key
method to solve the sequential problems. Electromagnetism-like algorithm will diversify
the inferior solutions while the genetic algorithm operator, i.e. the crossover, recombines
better solutions. From the experiment results presented the hybrid algorithm is better than
using the Electromagnetism-Like algorithm alone.

2.2 Flowshop scheduling problems

In the operations research literature, flowshop scheduling is one of the most well studied
problems in the area of scheduling (Murata et al. 1996). A permutation flowshop scheduling
problem (PFSP) concerns that n jobs are processed on m machines in the same order to meet
one or some specified objectives. Baker (1974) summarized the assumptions of permutation
flowshop scheduling problems. Therefore most of the research works emerged to develop
effective heuristics and metaheuristics.

Framinan et al. (2004) reported a review and classification of the heuristics for permu-
tation flowshop scheduling problems. Hejazi and Saghafian (2005) presented a complete
survey of flowshop scheduling problems and contributions from 1954 to 2004. This sur-
vey concerned some exact methods, constructive heuristics, metaheuristics, and evolution-
ary approaches. This paper is a good reference for n/m/p/Cmax. Ruiz and Maroto (2005)
provided a comprehensive review and evaluation of permutation flowshop heuristics. For
example, they did extensive comparisons in the flowshop scheduling problems, including
tabu search, simulated annealing, genetic algorithms, iterated local search, and hybrid tech-
niques Through reading these review articles, it is apparent that heuristics developed for
PFSPs have proposed a remarkable contribution.

Leaving the traditional structures behind, this work intends to improve the effectiveness
and efficiency of genetic search by embedding more feedback information in the evolution-
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ary process by incorporating probabilistic models. Next section presents the evolutionary
algorithm with probabilistic models.

2.3 Evolutionary algorithm with probabilistic models

Genetic Algorithm can be treated as an implicit probabilistic model whereas there are some
algorithms which are able to estimate unknown probability distribution. These algorithms
are named evolutionary algorithm with probabilistic models (EAPM), probabilistic model-
building genetic algorithms (PMBGAs), or estimation of distribution algorithms (EDAs)
(Pelikan et al. 2002). EAPM is a brand new branch of GA, which learns useful population
information from the promising solutions and then samples new offspring. The advantage
of EAPM is the probabilistic model which enables the offspring representing this solution
structure. EAPM has gained more and more attentions in the academic field so far.

Baluja (1995) and Baluja and Davies (1998) discussed the population-base incremental
learning (PBIL) algorithm and combining optimizers with mutual information tree (COMIT)
respectively. PBIL updates statistic information generation by generation, which is an ex-
tremely simple algorithm and there is no interdependent parameters. COMIT selects initial
solutions intelligently and then combines the hill-climbing algorithm or PBIL into together.
Later on, Muhlenbein and Paaß (1996) proposed a famous algorithm named Univariate Mar-
ginal Distribution Algorithm (UMDA). UMDA is similar to PBIL and cGA.

Harik et al. (1999) proposed compact genetic algorithm (cGA). The genetic vector is the
corresponding probability distribution and each gene is generated independently. Compared
cGA with simple GA, cGA requires l ∗ log2(n + 1) bits and GA needs l ∗ n. In addition, it
differs from the PBIL algorithm because cGA takes the fix length of updating strategy of
probability vector while PBIL. cGA provides a good stimulation for the design of genetic
algorithm.

Later on, there is an important concept emphasized in guided mutation (Zhang et al.
2005). Although the probabilistic model extracted the parental distribution, which provided
global information of evolutionary direction; however, the probabilistic model doesn’t aware
the local information. In order to conquer this problem, a proportion of genes are copied
into the new chromosome and the rest of genes are selected by the probabilistic model.
Therefore, the contribution of this research showed an important concept when we design
an evolutionary algorithm with probabilistic models.

Above probabilistic models assumed there is no interaction between/among variables.
When interactions exist, EAPM requires more complex model to solve it. For the pairwise
interactions, MIMIC, Dependency Tree, and BMDA are proposed. To cover the multivariate
interactions, Harik (1999) developed extended compact genetic algorithm (ECGA) which is
the extended version of cGA. ECGA actually adopts the marginal product models (MPMs)
rather than a vector. This model is able to make the exposition simpler, and enables the
linkage of the variables. The other algorithm in this class is Bayesian optimization algorithm
(BOA) in Pelikan et al. (1999). Finally, for extensive review of evolutionary algorithm based
on probabilistic models, please refer to Larrañaga and Lozano (2002), Lozano (2006), and
Pelikan et al. (2002).

This paper attempts to develop a novel approach to generate artificial chromosomes,
which can be embedded in the original GA procedure to speed up the convergence procedure
in solving the scheduling problems. The approach attempts to extract the superior gene
information from the current population to generate new offspring. By injecting these new
generated artificial chromosomes into the process, the convergence rate and solution quality
of the GA searching procedure will be improved greatly.
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3 Generating artificial chromosomes by mining gene structures

In tradition, the scheduling problems were solved by some exact algorithms, such as Branch
and Bound algorithm, Dynamic programming, and Lagrangian relaxation. However, owing
to the computational complexity, these methods could only solve small size problems. As
a result, this research proposed an artificial chromosome genetic algorithm (ACGA) with
probabilistic control to solve the single machine and flowshop scheduling problems. This
algorithm is able to capture the parental distribution and to generate solutions by the proba-
bilistic model. Furthermore, this proposed algorithm considers the issue of diversity preser-
vation of the probabilistic models. Thus, this characteristic makes it different from other
previous EAPM algorithms.

The primary procedure of ACGA is to collect gene information first and to use the gene
information to generate artificial chromosomes. Before collecting the gene information,
ACGA collects the chromosomes whose fitness is better by comparing the fitness value of
each chromosome with average fitness value of current population. Thus, the average fitness
is calculated. A detailed procedure of the ACGA algorithm is depicted in Fig. 1.

There are two parameters to be decided in this algorithm, which are startingGen and
interval. The first parameter startingGen is to determine the starting time of generating arti-
ficial chromosomes. The main reason is that the probabilistic model should be only applied
to generate better chromosomes when the searching process reaches a more stable state. As
a result, the probability model is applied after some generations. Later on, artificial chromo-
somes are not generated in each generation because it takes more computational time since
the proportional selection takes O(n2) time complexity for each solution. Consequently,
interval controls the time interval of artificial chromosomes generated. A set of experiments
for parameter configuration has been set up by Design-of-Experiment (DOE). DOE will ex-
amine the significance of each factor. According to these preliminary results, both factors
have no significant difference. Therefore, the startingGen and interval are set to 500 and 50
in later experiments, respectively.

The following Sect. 3.1 explains the proposed algorithm in detail. First, a step by step
procedure is applied to explain how to establish a probabilistic model. Then in Sect. 3.2, an
instance is applied to explain how to generate an offspring by the probabilistic model.

3.1 Establishing a probabilistic model

Suppose a population has M strings X1,X2, . . . ,XM at current generation t , which is de-
noted as Population(t ). Then, Xk

ij is a binary variable in chromosome k, which is shown
in (1).

Xk
ij =

{
1 if job i is assigned to position j,

0 otherwise,
i = 1, . . . , n; j = 1, . . . , n (1)

The fitness of these M chromosomes is evaluated and the gene information is collected
from N best chromosomes where N ≤ M . The N chromosomes are set as M/2 in this
research. The purpose of only selecting N best chromosomes from population is to prevent
the quality of the probabilistic model from being down-graded by inferior chromosomes.
Let Pij (t) be the probability of job i to show up at position j at current generation. Our
probability model is similar to PBIL where the Pij (t) is updated as follows:

Pij (t + 1) = 1

N

N∑
k=1

Xk
ij , i = 1, . . . , n, j = 1, . . . , n (2)
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Fig. 1 The framework of the ACGA

For the probabilistic matrix of all jobs at different positions, they are written as the (3)

P (t + 1) =
⎛
⎜⎝

P11(t + 1) · · · P1n(t + 1)
...

. . .
...

Pn1(t + 1) . . . Pnn(t + 1)

⎞
⎟⎠ (3)

To demonstrate the working theory of the artificial chromosome generation procedure, a
5-job problem is illustrated in Fig. 2. Suppose there are ten solutions (chromosomes) whose
fitness is better than average fitness. Then, we accumulate the gene information from these
ten chromosomes to form a dominance matrix. As shown in the left-hand side of Fig. 2, there
are two job 1, two job 2, two job 3, one job 4, and three job 5 on position 1. Again, there
are three job 1, one job 2, two job 3, three job 4, and one job 5 on position 2. The procedure
will repeat for the rest of the position. The dominance matrix contains the gene information
from better chromosomes and they are illustrated in the right-hand side of Fig. 2. Finally, the
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Fig. 2 To collect gene information and converted into a dominance matrix

value of each element is divided by N which is the total number of chromosomes selected.
Consequently, the probabilistic matrix P is constructed.

3.2 Generating offsprings by the parental distribution

As soon as the probabilistic matrix P is built, jobs are assign onto each positions by propor-
tional selection. Through this proportional selection, Zhang and Muhlenbein (2004) showed
if the distribution of the new elements capture the parents well, global optimal will be ob-
tained, and a factorized distribution algorithm converges globally under proportional selec-
tion. The assignment sequence for each position is assigned in random sequence, which will
be able to diversify the artificial chromosomes. The assignment procedure is determined as
follows:

S: A set of shuffled sequence which determines the sequence of each position is assigned
a job.

�: is the set of un-arranged jobs.
J : The set of arranged jobs. J is empty in the beginning.
θ : A random probability is drawn from U(0,1).
i: A selected job by proportional selection.
k: The element index of the set S.

1: S ← shuffled the job number [1 . . . n]
2: J ← �

3: while k �= � do
4: θ ← U(0,1)

5: Select a job i satisfies θ ≤ Pik/
∑

i∈� P (i, k)

6: J (k) ← i

7: ProbabilityControl(i, k)
8: � ← �\i
9: S ← S\k

10: end while
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Step 7 is the probability control, which stresses the diversification for the probabilistic
models. This paper proposed three different methods proposed for probability control. With-
out using the probability control, it is a generic ACGA. The detail descriptions of probability
control are shown in Sect. 3.3. Finally, since the time-complexity of the proportional selec-
tion is O(n2), it spends more time than using crossover operator. As a result, it is the reason
why this paper hybridizes the probabilistic model with genetic operators that can avoid the
excessive computational efforts.

3.3 Probability control

In this section, there are some proposed methods which discuss the diversification for the
probabilistic models. As far as the diversification concerns, the idea is to create diversified
artificial chromosomes by mitigating the probability of job i assigned to a position j by a
proportional selection. The main reason of reducing the probability value is when there is
a Pij which very closes to 1, the proportional selection might always select this job to this
position again. It may cause the problem of stagnation or jumping into local optimal. Hence,
our idea is motivated by the pheromone control in Ant Colony Optimization (ACO) (Corne
et al. 1999). The pheromone control methods are categorized into evaporation (Alves and
Almeida 2007), aging (Schoonderwoerd et al. 1997), and limiting and smoothing pheromone
(Stutzle et al. 2000). Sim and Sun (2003) mentioned that evaporation methods may not have
the weaknesses belonged to aging, and limiting and smoothing pheromone. Consequently,
the concept of evaporation is applied here. These three different evaporation methods are
introduced as follows.

3.3.1 Constant evaporation

The first method comes up with a parameter α which exponentially decreases the probability
of the job i at position j . Parameter α is a constant value, which is set to a small value (e.g.,
0.05). In order to distinguish this method from the latter, it is called the constant evaporation.
The equation is shown as follows:

Pij = Pij − Pij ∗ α (4)

3.3.2 Current best objective evaporation

The second method takes the advantage of the current best objective value among all solu-
tions generated. Thus, (1/currentBestObj) ∗ α constitutes a little increasing value than the
Pij ∗ (1 − α). The setting of α = 0.05 is the same as the constant evaporation. This method
is called the best objective evaporation and it is shown in (5)

Pij = Pij ∗ (1 − α) + (1/currentBestObj) ∗ α (5)

3.3.3 Max-Min evaporation

Finally, we substitute the current best objective value by the difference of maximum and
minimum objective value among all chromosomes in the current population. Hence the
method is called max-min range evaporation which is as shown in (6).

Pij = Pij ∗ (1 − α) +
(

1

max Obj − min Obj

)
∗ α (6)
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3.4 Replacement strategy

After injecting artificial chromosomes into the population, we apply μ + λ replacement
strategy, which combines previous parent population and the new generated artificial chro-
mosomes into the gene pool. Then, we select better μ chromosomes from the combined
population and consequently, better solutions are preserved to the next generation.

4 Experimental results

In this section, the performance of ACGA with probability control, i.e., the constant evap-
oration, current best objective evaporation, and Max-Min evaporation is compared with
other algorithms published in the literature. Furthermore, these algorithms solved the single
machine scheduling problems and flowshop scheduling problems, which were taken from
Sourd and Kedad-Sidhoum (2003) and Reeves (1995), respectively. Each instance is repli-
cated 30 times by each algorithm. Sections 4.1 and 4.2 demonstrate the experimental results
of the single machine problems and flowshop scheduling problems, respectively.

4.1 Results of single machine problems

There are numerous data sets published in the literature for the single machine scheduling
problems, including 20, 30, 40, 50, 60, and 90 jobs. Each data set of 20 jobs up to 50 jobs
contains 49 instances (problems) whereas there are only 9 instances in the data set of 60
jobs and 90 jobs. We carried out our experiments on these total 214 instances. The stopping
criterion is the number of examined solutions, which is 100,000 solutions. The parameters
of GA include the crossover rate, mutation rate, and population size which are determined in
our preliminary experiments. They are set up as 0.8, 0.5, and 100, respectively. ACGA with
probability control will be compared with Genetic Algorithm with elitism (GA), Genetic
Algorithm with Dominance Properties (GADP) in Chang et al. (2009), the original version
of ACGA (Chang et al. 2008b), and the hybrid framework of ACGA with Dominance Prop-
erties (ACGADP). GADP applies a set of dominance properties to generate a good initial
population in the beginning and it is able to enhance the exploration ability of Genetic Al-
gorithm. As a result, ACGADP means the initial solutions are constructed by dominance
properties and the rest of evolutionary process is conducted by ACGA.

In the experimental tests, there is no significant difference among these three evaporation
methods, i.e., ACGA with the three evaporation methods. Since ACGA with the current best
objective evaporation has a better result in average performance, it is compared with GA,
GADP, ACGA, and ACGADP. Some selected results are shown at Table1 which shows the
min, average, and max of the algorithms. However, there is still without enough information
to determine which algorithm is statistically significant. Consequently, ANOVA (Analysis
of Variance) and Duncan grouping test are employed to further distinguish the performance
of the algorithms. The complete test results are available on our website.1

To distinguish the performance of the proposed algorithm from the other four algorithms
in the literature, ANOVA was performed. As shown in Table 2, the first column source
indicated the factors; DF is the degree of freedom; SS is sum of squares; F is the value
of F test, and Pr is the probability of the statistic significance (Montgomery 2001). The

1http://ppc.iem.yzu.edu.tw/publication/sourceCodes/InjectionArtificialChromosomes/

http://ppc.iem.yzu.edu.tw/publication/sourceCodes/InjectionArtificialChromosomes/


Ann Oper Res

Ta
bl

e
1

Se
le

ct
ed

re
su

lts
of

si
ng

le
m

ac
hi

ne
sc

he
du

lin
g

pr
ob

le
m

s:
Jo

b
20

,3
0,

40
,5

0,
60

,a
nd

90

In
st

an
ce

G
A

G
A

D
P

A
C

G
A

A
C

G
A

D
P

A
C

G
A

+C
ur

re
nt

B
es

t
M

in
A

vg
.

M
ax

M
in

A
vg

.
M

ax
M

in
A

vg
.

M
ax

M
in

A
vg

.
M

ax
M

in
A

vg
.

M
ax

sk
s2

52
a

40
52

41
95

45
08

39
47

39
47

39
47

39
47

39
79

40
67

39
47

39
47

39
47

39
47

39
75

40
67

sk
s2

55
a

23
88

24
89

27
87

23
72

23
72

23
72

23
72

23
80

23
88

23
72

23
73

23
88

23
72

23
83

23
88

sk
s2

58
a

11
84

12
50

13
71

11
84

12
42

12
48

11
84

12
00

12
48

11
84

11
93

12
48

11
84

11
97

12
48

sk
s3

52
a

75
88

82
03

90
63

73
95

73
95

73
95

73
92

73
94

73
95

73
92

73
94

73
95

73
92

73
94

73
95

sk
s3

55
a

62
02

68
49

76
93

60
56

60
68

62
12

60
56

60
65

61
93

60
56

60
58

60
58

60
56

60
57

60
58

sk
s3

58
a

31
04

32
83

37
87

30
69

30
74

30
76

30
69

30
73

30
76

30
69

30
73

30
76

30
69

30
73

30
76

sk
s4

52
a

11
80

4
12

63
4

14
05

3
11

36
7

11
36

7
11

36
7

11
36

7
11

40
6

11
58

1
11

36
7

11
36

7
11

36
7

11
36

7
11

39
0

11
52

8
sk

s4
55

a
65

73
75

66
94

35
64

05
64

05
64

05
64

05
64

27
66

66
64

05
64

05
64

05
64

05
64

38
66

66
sk

s4
58

a
44

24
55

87
83

31
42

94
43

03
43

19
42

94
43

21
43

91
42

94
43

00
43

06
42

94
43

21
43

91
sk

s5
52

a
23

49
1

24
82

7
26

24
1

22
86

3
22

86
3

22
86

3
22

86
3

22
89

4
23

14
8

22
86

3
22

86
3

22
86

3
22

86
3

22
89

0
23

01
3

sk
s5

55
a

10
87

7
12

23
3

14
62

6
10

20
7

10
24

3
10

44
6

10
18

7
10

21
6

10
29

9
10

20
7

10
20

9
10

22
6

10
18

7
10

22
7

10
29

9
sk

s5
58

a
57

76
73

45
93

58
52

69
52

98
54

16
52

69
52

69
52

69
52

69
52

69
52

69
52

69
52

69
52

69
sk

s6
22

a
43

93
0

45
01

8
46

01
7

43
04

8
43

04
8

43
04

8
43

04
8

43
12

0
43

47
9

43
04

8
43

04
8

43
04

8
43

04
8

43
08

9
43

36
9

sk
s6

25
a

25
56

3
26

67
2

27
95

7
25

25
3

25
25

3
25

25
3

25
22

9
25

26
0

25
30

7
25

25
3

25
25

3
25

25
3

25
22

9
25

25
9

25
45

3
sk

s6
28

a
17

46
3

18
43

1
20

70
7

17
04

7
17

05
7

17
12

3
17

04
7

17
05

9
17

16
2

17
04

7
17

05
5

17
12

3
17

04
7

17
05

5
17

17
2

sk
s6

52
a

31
29

2
33

02
2

35
42

6
30

80
1

30
80

1
30

80
1

30
80

1
30

87
1

31
08

0
30

80
1

30
80

1
30

80
1

30
80

1
30

89
0

31
08

0
sk

s6
55

a
17

40
9

19
13

7
23

54
6

16
15

8
16

15
8

16
15

8
16

15
8

16
21

8
16

63
5

16
15

8
16

15
8

16
15

8
16

15
8

16
22

8
16

61
2

sk
s6

58
a

99
48

12
71

5
18

46
9

96
23

96
23

96
26

96
23

96
55

97
24

96
23

96
23

96
26

96
23

96
43

97
05

sk
s6

82
a

38
93

0
39

72
2

41
13

7
38

83
6

38
94

0
39

10
9

38
71

4
38

74
9

38
86

3
38

74
4

38
92

3
39

10
9

38
71

4
38

75
6

38
85

2
sk

s6
85

a
38

73
6

39
74

4
41

34
5

38
08

4
38

09
6

38
16

6
38

08
4

38
10

3
38

16
6

38
08

4
38

09
0

38
16

6
38

08
4

38
10

1
38

16
6

sk
s6

88
a

34
45

6
35

82
6

37
22

9
33

55
1

33
65

4
33

66
5

33
55

1
33

63
9

33
66

5
33

55
1

33
64

6
33

66
5

33
55

1
33

62
4

33
66

5
sk

s9
22

a
91

51
6

93
96

6
96

96
6

88
99

4
89

60
6

90
51

4
88

84
1

88
89

4
89

06
7

88
86

6
89

31
5

90
49

3
88

84
1

88
88

7
89

07
8

sk
s9

25
a

74
32

7
76

43
8

79
97

9
72

03
8

72
04

5
72

14
1

72
03

8
72

06
5

72
11

4
72

03
8

72
05

5
72

12
0

72
03

8
72

06
9

72
28

6
sk

s9
28

a
38

67
6

41
87

9
49

09
1

33
82

5
33

99
2

34
15

9
33

83
0

33
97

3
34

13
8

33
90

3
34

01
9

34
19

5
33

83
5

33
94

8
34

05
4

sk
s9

52
a

73
71

8
76

86
3

79
84

7
68

15
0

68
18

8
68

44
1

68
15

0
68

28
8

68
67

4
68

15
0

68
17

9
68

25
3

68
15

0
68

25
1

68
40

8
sk

s9
55

a
35

64
7

40
44

4
45

82
0

30
66

0
30

66
4

30
70

0
30

58
2

30
68

3
31

31
2

30
59

0
30

66
3

30
69

7
30

58
2

30
64

1
30

78
5

sk
s9

58
a

23
55

3
30

66
2

39
62

3
19

94
5

19
97

2
20

02
8

19
95

0
20

02
5

20
20

1
19

95
4

20
01

2
20

10
8

19
95

7
20

01
3

20
14

2
sk

s9
82

a
10

00
92

10
23

45
10

57
94

98
61

3
99

04
1

99
34

9
98

61
3

98
64

4
98

83
2

98
61

3
99

08
1

99
34

9
98

61
3

98
64

4
98

83
4

sk
s9

85
a

82
25

4
84

96
6

87
17

3
78

29
6

78
44

2
78

53
2

78
29

6
78

41
4

78
52

0
78

29
6

78
44

5
78

55
7

78
29

6
78

42
3

78
50

2
sk

s9
88

a
88

09
4

91
42

2
96

31
8

81
98

4
81

99
3

82
09

7
81

98
4

82
00

2
82

05
3

81
98

4
81

99
5

82
04

5
81

98
4

81
99

9
82

05
6



Ann Oper Res

Table 2 ANOVA result of the Method Comparisons in single machine scheduling problems

Source DF SS Mean square F value Pr > F

Instance 213.00 6.85E+12 3.22E+10 327224.00 <0.0001

Method 4.00 6.98E+09 1.75E+09 17757.60 <0.0001

Instance* 852.00 1.24E+10 14607067.82 148.64 <0.0001

Error 31030.00 3.05E+09 98270.56

Corrected total 32099.00 6.87E+12

Table 3 The Duncan grouping result for the five algorithms

Duncan grouping Mean N Method

A 13982.894 6420 GA

B 12827.096 6420 GADP

B

C B 12816.471 6420 ACGADP

C

C 12813.276 6420 ACGA

C

C 12811.868 6420 ACGA+Best Objective Evaporation

probability of the statistic significance shows that there exists significant difference among
these methods. As a result, Duncan grouping results is further applied in Table 3. When there
are two factors share the same alphabet, it means they are in the same group and there is no
significant difference for methods in the same group. On the other hand, there is statistical
difference between these two methods since they are in different groups. In our case, there
is no much difference among ACGA with best objective evaporation, ACGA and ACGADP.
However, three of them are better than GADP and GA. To conclude the results, ACGA with
evaporation consideration or ACGA is the best algorithm, ACGADP and GADP are ranked
second, and GA is the worst.

4.2 Results of flowshop scheduling problems

The instances of this flowshop scheduling problem are available from OR-Library.2 From
the results of the three variants of ACGA, there is no significant difference among these
three evaporation methods. However, ACGA with the Max-Min evaporation method has the
lowest average in average. Thus, ACGA with the Max-Min evaporation method is compared
with GA and the original version of ACGA. The results are shown in Table 4.

ANOVA is employed to evaluate the statistical significance of these three algorithms and
the results are shown in Table 5. The test shows that the factor, i.e., these three methods, is
significant. Therefore, Duncan grouping method is further applied to distinguish the group-
ing of these algorithms, which is demonstrated in Table 6. The Duncan grouping presents
three of them are in different group, which means the ACGA with the Max-Min evaporation
is the best, ACGA is the intermediate, and GA is the worst.

2http://people.brunel.ac.uk/~mastjjb/jeb/info.html

http://people.brunel.ac.uk/~mastjjb/jeb/info.html


Ann Oper Res

Table 4 Reeves flowshop results

Instance n,m opt GA ACGA ACGA+Max-Min

Min Mean Max Min Mean Max Min Mean Max

rec01 20, 5 1247 1249 1252.20 1280 1247 1248.90 1249 1247 1248.90 1249

rec03 20, 5 1109 1109 1112.30 1117 1109 1110.50 1111 1109 1110.90 1117

rec05 20, 5 1242 1245 1251.20 1273 1245 1245 1245 1245 1245.80 1269

rec07 20, 10 1566 1584 1586.80 1626 1566 1576.90 1584 1566 1577.30 1584

rec09 20, 10 1537 1538 1568.70 1589 1537 1554.80 1574 1537 1557.80 1574

rec11 20, 10 1431 1431 1445.40 1476 1431 1440.60 1473 1431 1439.30 1469

rec13 20, 15 1930 1936 1959.80 1981 1935 1949.70 1968 1930 1949.20 1961

rec15 20, 15 1950 1961 1980.50 2011 1950 1969.10 1993 1951 1969.90 2018

rec17 20, 15 1902 1919 1957.40 2009 1902 1938.30 1974 1911 1936.10 1960

rec19 30, 10 2093 2124 2152.30 2197 2111 2132 2171 2099 2133.60 2162

rec21 30, 10 2017 2050 2063.30 2103 2046 2051.80 2096 2046 2051.80 2084

rec23 30, 10 2011 2041 2070.60 2104 2023 2055.40 2086 2021 2048 2074

rec25 30, 15 2513 2554 2595.50 2660 2556 2588.50 2637 2532 2586.10 2633

rec27 30, 15 2373 2402 2438.90 2484 2396 2426.20 2523 2397 2421.60 2446

rec29 30, 15 2287 2324 2367.20 2423 2298 2363.20 2414 2309 2347.40 2383

rec31 50, 10 3045 3124 3185.30 3264 3121 3150.80 3239 3106 3153 3255

rec33 50, 10 3114 3140 3180.90 3231 3139 3153 3219 3140 3156.10 3201

rec35 50, 10 3277 3277 3308.90 3370 3277 3282.20 3308 3277 3280.90 3288

rec37 75, 20 4951 5210 5274.70 5351 5156 5245.60 5353 5169 5243 5319

rec39 75, 20 5087 5266 5338.40 5442 5248 5337.60 5453 5247 5315.50 5379

rec41 75, 20 4960 5215 5289.40 5356 5175 5270.70 5349 5168 5268.80 5370

Table 5 ANOVA result of the Method Comparisons

Source DF Type I SS Mean square F value Pr > F

Instance 20 3072650812.00 153632541.00 332227.00 <.0001

Method 2 95664.00 47832.00 103.44 <.0001

Instance*Method 40.00 42819.00 1070.00 2.31 <.0001

Error 1827 844865.00 462.00

Corrected 1889 3073634160.00

5 Conclusions

This research presented an evolutionary algorithm with probabilistic models, which is a
hybrid framework combining the probabilistic model and genetic operators together. From
these experiments in single machine and flowshop scheduling problems, ACGA outper-
formed other algorithms in the literature. Part of the reason is that the probabilistic model
can extract parental distribution and then generates good artificial solution following the
parental distribution. Consequently, the proposed algorithm can provide very promising re-
sults.

Finally, the key of improving the evolutionary algorithm with probabilistic models is
based on the establishment of a good probabilistic model. However, previous researches did
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Table 6 The Duncan grouping result for the three algorithms

Duncan grouping Mean N Method

A 2541.89 630.00 GA

B 2528.14 630.00 ACGA

C 2525.75 630.00 ACGA+Max-Min Evaporation

not take this issue into consideration. Therefore, the major contribution of this research is to
mine the structure of the chromosomes generated in previous generations by establishing a
more solid probabilistic model through the application of different data mining techniques
such as clustering, classification or fuzzy methods. In addition, the idea of probability con-
trol is applied to further improve the performance of evolutionary algorithm. The probability
control can further enhance ACGA to create a much diversified population through the prob-
ability evaporation. Consequently, the intensive experiments in the single machine schedul-
ing problems and the flowshop scheduling problems are very satisfactory and convincing.
We expect to apply the ACGA with probability control to other combinatorial problems in
the near future.

Acknowledgements We appreciate that Prof. Shaw S.Wang provided some constructive comments for this
paper.
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