
Expert Systems with Applications 36 (2009) 7135–7141
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Artificial chromosomes embedded in genetic algorithm for a chip resistor
scheduling problem in minimizing the makespan

Pei-Chann Chang a,c,*, Jih-Chang Hsieh b, Shih-Hsin Chen d, Jun-Lin Lin a, Wei-Hsiu Huang c

a Department of Information Management, Yuan Ze University, 135 Yuan Tung Road, Taoyuan 320, Taiwan, ROC
b Department of Finance, Vanung University, Chung-Li, Tao-Yuan, Taiwan, ROC
c Department of Information Management, Yuan Ze University, Taoyuan 320, Taiwan, ROC
d Department of Electronic Commerce Management, Nanhua University, 32 Chungkeng, Dalin, Chiayi 62248, Taiwan, ROC

a r t i c l e i n f o
Keywords:
Artificial chromosome
Genetic algorithm
Flowshop scheduling
Makespan
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.08.047

* Corresponding author. Address: Department of
Management, Yuan Ze University, 135 Yuan Tung Roa
Tel.: +886 3 4638800x2305; fax: +886 3 4638884.

E-mail address: iepchang@saturn.yzu.edu.tw (P.-C
a b s t r a c t

The manufacturing processes of a chip resistor are very similar to a flowshop scheduling problem only
with minor details which can be modeled using some extra constraints; while permutation flowshop
scheduling problems (PFSPs) have attracted much attention in the research works. Many approaches like
genetic algorithms were dedicated to solve PFSPs effectively and efficiently. In this paper, a novel
approach is presented by embedding artificial chromosomes into the genetic algorithm to further
improve the solution quality and to accelerate the convergence rate. The artificial chromosome genera-
tion mechanism first analyzes the job and position association existed in previous chromosomes and
records the information in an association matrix. An association matrix is generated according to the
job and position distribution from top 50% chromosomes. Artificial chromosomes are determined by per-
forming a roulette wheel selection according to the marginal probability distribution of each position.
Two types of PFSPs are considered for evaluation. One is a three-machine flowshop in the printing oper-
ation of a real-world chip resistor factory and the other is the standard benchmark problems retrieved
from OR-Library. The result indicates that the proposed method is able to improve the solution quality
significantly and accelerate the convergence process.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction tances diversified. It is not an easy task to manage so many speci-
The chip form electrical resistance is designed to be soldered nota-
bly on a printed circuit card or on a hybrid circuit substratum as shown
in Fig. 1. It includes an electrically insulating substratum of the cera-
mic type, to which is attached by a layer of adhesive organic resin a
sheet of metal or of resistive alloy which is engraved to provide a sin-
uous resistance. The layer of resin leaves in the area of the two oppo-
site sides of the substratum, two free areas, at the extremities of the
engraved resistive sheet. These two parts of the resistive sheet are
each covered by a thin layer of a metal or alloy adhering to the resistive
sheet, this layer being covered by a second thicker layer of metal or
conductive alloy, and this second layer being covered by a third, also
thicker layer of a solderable metal, these three superimposed layers
spreading equally over both lateral sides opposite the substratum
and partially on its face opposite the engraved resistive sheet.

Chip resistor is a key component to electronic appliances man-
ufacturing industry. Electronic appliances today have to cater the
need of customers. This makes the specifications of chip resis-
ll rights reserved.

Industrial Engineering and
d, Taoyuan 320, Taiwan, ROC.

. Chang).
fications. Actually the printing is the bottleneck operation in this
industry. To improve the performance of the bottleneck, it may
be of interest to apply a new scheduling technique.

2. Literature reviews

Scheduling problems have been applied in many practical fields.
For example, Caccetta and Hill (2003) discussed the open pit mine
scheduling problem, Bai and Elhafsi (1996) dealt with a manufac-
turing system with setup changes, and Dror and Mullaseril
(1996) concerned the scheduling problem on civil engineering pro-
jects. In this study, the scheduling problem in a real-world chip
resistor factory is presented. The production process can be defined
as a flowshop system. The properties of a permutation flowshop
are described as follows:

A permutation flowshop scheduling problem (PFSP) concerns
that n jobs {J1, J2, . . ., Jn} are processed on m machines {M1, M2,
. . ., Mm} in the same order to meet one or some specified objectives.
Baker (1974) summarized the assumptions of permutation flow-
shop scheduling problems including:

1. Each job is allowed to be processed at most on one machine at
the same time.

mailto:iepchang@saturn.yzu.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Fig. 1. Configuration of a chip resistor.

7136 P.-C. Chang et al. / Expert Systems with Applications 36 (2009) 7135–7141
2. Each machine is allowed to process only one job at a time.
3. No preemption is allowed.
4. All jobs are independent.
5. All jobs are available being processed at time 0.
6. The setup time of each job on every machine can be ignored.
7. Machine breakdown is not considered.

Garey, Johnson, and Sethi (1976) proved that permutation flow-
shop scheduling problem is NP-complete. Therefore most of the re-
search works emerged to develop effective heuristics and
metaheuristics. Framinan, Gupta, and Leisten (2004) reported a re-
view and classification of the heuristics for permutation flowshop
scheduling problems. All the heuristics mentioned in this review
were developed for minimizing makespan. Reza Hejazi and Sagha-
fian (2005) presented a complete survey of flowshop-scheduling
problems and contributions from 1954 to 2004. This survey con-
cerned some exact methods, constructive heuristics, metaheuris-
tics and evolutionary approaches. This paper is a good reference
for n/m/p/Cmax. Ruiz and Maroto (2005) provided a comprehensive
review and evaluation of permutation flowshop heuristics.
Through reading these review articles, it is apparent that heuristics
developed for PFSPs have proposed a remarkable contribution.

Heuristics are developed for some specified situations. They
may not work in some unexpected situations. To involve more flex-
ibility, metaheuristics emerge. Among the metaheuristics, genetic
algorithms have attracted a lot of attention because of many con-
vincing results. Chen, Vempati, and Aljaber (1995), Reeves (1995)
and Murata, Ishibuchi, and Tanaka (1996), did the pioneering work
by applying genetic algorithms in solving flowshop scheduling
problems. Reeves and Yamada (1998) and Wang and Zheng
(2003), Two-phase subpopulation GA by Chang, Chen, and Lin
(2005) which simultaneously applies several subpopulation and
assigns the weight for these subpopulation to explore the solution
space uniformly; mining gene subpopulation GA by Chang, Chen,
and Liu (2007) which employs a mining gene technique based on
the subpopulation genetic algorithm. Chang, Hsieh, and Liu
(2006) hybridized other techniques with genetic algorithms to im-
prove the genetic searching capability. Iyer and Saxena (2004) pro-
posed an improved genetic algorithm to solve permutation
flowshop scheduling problem. It is not difficult to search more re-
lated genetic algorithm applications in the field of PFSPs. However,
those applications are similar in algorithmic structures. Leaving
the traditional structures behind, this work intends to improve
the effectiveness and efficiency of genetic search by embedding
more feedback information in the evolutionary process.

The central task of PFSPs is to arrange jobs to positions to meet
one or some specified objectives. In other words, if the association
between jobs and positions can be found then PFSPS can be solved
immediately. However, scheduling problems belong to discrete
optimization problems. Therefore there is no apparent links be-
tween jobs and positions. Although it is hopeless to find some
deterministic job and position associations, it still can strive for
some probabilistic job and position associations. It may have some
improvement with embedding the probabilistic job and position
associations.

Observing the algorithmic structures of genetic algorithms, it is
interesting that each genetic algorithm would evolve many gener-
ations and it may be meaningful to analyze the job and position
associations from the evolved top chromosomes. To generate arti-
ficial chromosomes, it depends on the probability of each job at a
certain position. The idea is originated from Chang, Wang, and
Liu (2005a) and Chang, Chen, and Fan (2008) which propose a
methodology to improve GAs by mining gene structures within a
set of elite chromosomes generated in previous generations. In-
stead of replacing the crossover operator and mutation operator
due to efficiency concern, the proposed algorithm is embedded
into SGA. Analyzing each job assigned to which position and record
the relative frequency of each job assigned to a specified position
infers a probability distribution. Then a roulette wheel selection
implements according to the probability distribution to generate
artificial chromosomes. Embedding artificial chromosomes in a ge-
netic algorithm may improve the genetic search.

To verify the effectiveness and efficiency of artificial chromo-
somes embedded in genetic algorithm (ACEGA), two types of PFSPs
are applied. One is a real-world chip resistance factory and the
other is the standard benchmark instances provided by Reeves
(1995). The real-world chip resistance factory has a bottleneck
operation. This operation consists of three printing workstations.
It is expected that applied the proposed method is able to improve
the scheduling performance. The standard benchmark instances
are provided with optimum solutions. Comparing with the opti-
mum solutions shows the absolute performance of ACEGA.

3. A chip resistor scheduling problem

The major steps of chip resistor manufacturing process consist
of printing layers of colloid on alumina substrates. Printing has
to be processed layer by layer. Each layer is processed in a specified
workstation. The processing order of printing operations can not be
changed.

There are three workstations in printing including R worksta-
tion, G1 workstation, G2/GM workstation. R workstation prints
resistances on the alumina substrates. This process is an impera-
tive step to set resistance. G1 workstation prints the internal layer
of collotype. G2/GM workstation prints the external layer of collo-
type. A sample of a chip resistance of this case factory is depicted in
Fig. 2.

Jobs have to be processed in the same order through the three
workstations. This can be treated as a flowshop production system.
The production information can be retrieved from the shop floor
directly.

The chip resistor scheduling problem can be defined as follows:
if p(i, j) is the processing times for job i on machine j, and a job per-
mutation p1, p2,...,pn, where there are n jobs and m machines, then
the completion times C(pi, j) is calculated as follows:

Cðp1;1Þ ¼ pðp1;1Þ ð1Þ
Cðpi;1Þ ¼ Cðpi�1;1Þ þ pðpi;1Þ for i ¼ 2; . . . ; n ð2Þ
Cðp1; jÞ ¼ Cðp1; j� 1Þ þ pðp1; jÞ for j ¼ 2; . . . ;m ð3Þ
Cðpi; jÞ ¼maxfCðpi�1; jÞ;Cðpi; j� 1Þg þ pðpi; jÞ
for i ¼ 2; . . . ;n; j ¼ 2; . . . ;m ð4Þ

The makespan is finally defined as



G2/GM 

Alumina Substrate 

G1 
R Layer 

Fig. 2. A profile of chip resistor.

P.-C. Chang et al. / Expert Systems with Applications 36 (2009) 7135–7141 7137
CmaxðpÞ ¼ Cðpn;mÞ: ð5Þ

Then, the chip resistor scheduling problem is to find a permutation
p* in the set of all permutations P such that

Cmaxðp�Þ 6 CmaxðpÞ 8p 2 P ð6Þ

The p* is the optimal makespan for a PFSP.
The Chip resistor scheduling problem can be presented using a

mixed integer programming model and the model is formulated as
follows:

min
Xm�1

i¼1

Xn

j¼1

xj1pij þ
Xn�1

j¼1

Imj

 !
ð7Þ

subject to

Xn

j¼1

xjk ¼ 1 k ¼ 1; . . . ;n;

Xn

k¼1

xjk ¼ 1 j ¼ 1; :::;n;

Iik þ
Xn

j¼1

xj;kþ1pij þWi;kþ1 �Wik �
Xn

j¼1

xjkpiþ1;j � Iiþ1;k ¼ 0

k ¼ 1; . . . ; n� 1; i ¼ 1; . . . ;m� 1;
Wi1 ¼ 0 i ¼ 1; . . . ;m� 1; I1k ¼ 0 k ¼ 1; . . . ;n� 1

ð8Þ

where xjk is a decision variable. It equals 1 if job j is the kth job in the
sequence and 0 otherwise. Iik is an auxiliary variable that denotes
the idle time on machine i between the processing of the jobs in
the kth position and (k+1)th position. Wik is an auxiliary variable that
denotes the waiting time of the job in the kth position in between
machine i and i+1. The first set of constraints represents that exactly
only one job has to be assigned to position k for any k. The second
set of constraints represents that job j has to be assigned to exactly
only one job. The third set of constraints represents the relation-
ships of decision variable xjk with the physical constraints.

4. Artificial chromosome embedded in genetic algorithm

It is observed that genetic algorithms evolve generation by gen-
eration. Once the number of generations is considerably large, one
genetic algorithm should ever search a huge number of solutions.
Then it would be meaningful to discuss the job and position asso-
ciation among the searched solutions. Although it is not easy to
find a deterministic job and position association, an alternative is
to find a probabilistic association between jobs and positions. As
long as the number of searched solutions is large enough, the fre-
quency of each job assigned to each position can be summarized.
First, the top quality chromosomes are collected together and
the frequency of each job assigned to which position is recorded
in a matrix cell. The whole cells in the matrix can be filled by the
same procedure. Dividing the frequency of each job by the total
frequency of each position obtains the marginal probability distri-
bution of each position. Then to assign which job to this position
can be determined by a roulette wheel selection according to the
marginal probability distribution of this position. The higher the
probability, the higher chance of this job being assigned to this po-
sition. Through this mechanism, new chromosomes can be created.
The new created chromosomes are named artificial chromosomes.
It is expected that artificial chromosomes are able to find higher
quality solutions. The artificial chromosomes are embedded in a
simple genetic algorithm (SGA) to further improvement on solu-
tion quality. The overall procedure of embedding artificial chromo-
somes in a simple genetic algorithm is depicted in Fig. 3. The
procedure is described in two subsections. Subsection 4.1 describes
the simple genetic algorithm procedure. Subsection 4.2 describes
the artificial chromosome mechanism embedded in the genetic
algorithm.

4.1. Simple genetic algorithm

In this subsection, the steps to implement a simple genetic algo-
rithm are introduced. The key steps include encoding, initial popu-
lation generation, fitness function, reproduction, crossover,
mutation, and stopping criterion.

4.1.1. Encoding: integer coding
Encoding relates to an appropriate chromosome representation.

Effective representation perhaps reduces computational complex-
ity. In PFSPs, jobs are processed by a series of machines in an
identical order. PFSPs only concern the sequences of jobs. The se-
quences of machines are not of interest. That is, it only needs to
show the processing order of jobs in the chromosomes. Therefore
it is feasible to use integer numbers and the permutation of the
integers to represent the jobs and feasible sequences respectively.
Taking a 5-job case as an example, {1, 2, 3, 4, 5} represents the jobs
to be processed. If the sequence is determined and represented as
2-1-5-4-3, that means the processing order is job 2, job 1, job 5, job
4, and job 3.

4.1.2. Initial population generation: random number generation
An initial population consists of a number of chromosomes. A

chromosome represents a processing sequence for the scheduling
problem. To keep diversity in the initial population, random num-
ber generation is applied to generate initial sequences.

4.1.3. Fitness function and reproduction
Because the type of this problem is a single objective problem,

the objective value of each chromosome can be used as fitness di-
rectly. Then, the binary tournament selection proposed by Gold-
berg and Deb (1991) is employed in the reproduction operation.
The criterion to reproduce better offsprings is dependent on their
own fitness; the individual whose fitness is lower will be repro-
duced. As a result, the reproduction operation selects better chro-
mosomes into the mating pool.

4.1.4. Crossover: two-point crossover
In the crossover step, two chromosomes are randomly selected

and a random number rc is generated first. If rc is smaller than Pc,
then crossover implements on this pair, else no crossover.

Syswerda (1991) proposed the concept of position-based cross-
over including single-point crossover and two-point crossover.
Murata and Ishibuchi (1994) and Murata et al. (1996) reported that
two-point crossover is effective for flowshop scheduling problems.



Fig. 3. The framework of artificial chromosome embedded in genetic algorithm.

7138 P.-C. Chang et al. / Expert Systems with Applications 36 (2009) 7135–7141
The steps to implement a two-point crossover are described as
follows:

Select two chromosomes Parent 1 and Parent 2.
Randomly assign two cutting points, suppose the cutting points

are located at ith and jth positions respectively. Genes beyond the
cutting points in Parent 1 are directly duplicated to the offspring.

The vacant positions in the offspring are duplicated from Parent
2.

For example, two 10-job chromosomes namely Parent 1 and
Parent 2 are shown in Fig. 4. Two cutting points are assigned at po-
sition 3 and position 7. Jobs before position 3 and jobs after posi-
tion 7 in Parent 1 are duplicated to the offspring as Fig. 5. The
sequence of vacant positions in the offspring is duplicated from
↓ ↓
Parent 1 1 2 3 4 5 6 7 8 9 10 

Parent 2 1 6 4 7 2 3 9 10 8 5 

Fig. 4. Parent 1 and Parent 2.

Offspring 1 2      8 9 10 

Fig. 5. Duplication of genes from Parent 1.
Parent 2 and the precedence is still kept. Then the crossover fin-
ishes and the complete offspring is shown in Fig. 6.

4.1.5. Mutation: swap mutation
In the mutation step, two positions of a chromosome are ran-

domly selected and a random number rm is generated first. If rm
is smaller than Pm, then mutation implements on this pair, else
no mutation.

Swap mutation is to randomly select two positions in a chromo-
some and interchange the two positions. For example, position 1
and 2 are assigned in Fig. 7. Before mutation, the sequence is 2-
Offspring 1 2 6 4 7 3 5 8 9 10 

Fig. 6. Duplication of genes from Parent 2.

6

2 9 5 3 4 8 10 6

2 10 5 3 4 8 9

Position 1

7 1

7 1

Before 
mutation

After 
mutation

Position 2

Fig. 7. Swap mutation.



P o s itio n

1  2  3  4  5  

1  2  3  1  2  2  

2  2  1  3  2  2  

3  2  2  1  3  2  

4  1  3  1  2  3  

5  3  1  4  1  1  

Jo b

Fig. 10. Eliminate job in row 4 and position in column 3 from the association
matrix.

Jobs Frequency Probability Accumulated Probability 

1 1 0.10 0.10 
2 3 0.30 0.40 
3 1 0.10 0.50 
4 1 0.10 0.60 
5 4 0.40 1.00 

Fig. 9. The probability and accumulated probability of each job for position 3.

P.-C. Chang et al. / Expert Systems with Applications 36 (2009) 7135–7141 7139
9-5-3-4-8-10-6-7-1. The corresponding jobs at position 1 and 2 are
job 9 and job 10. Then the two jobs are interchanged and the se-
quence becomes 2-10-5-3-4-8-9-6-7-1 after mutation.

4.1.6. Stopping criterion
Maximum number of generations (Gmax) is specified in advance.

If the number of generations is not greater than Gmax then turn
back to evaluate the fitness of the chromosomes in the new popu-
lation, else the algorithm is terminated.

4.2. Artificial chromosomes

4.2.1. Association matrix
Top quality chromosomes are collected together and recorded

the frequency of each job on each position. Taking a 5-job case as
an example, 10 chromosomes are analyzed and the frequency of
each job on each position is summarized in the association matrix
in Fig. 8.

4.2.2. Job assignment
According to the association matrix, the jobs can be assigned

one by one. Suppose position i is selected first, which job will be
assigned can be made by the following steps:

(1) Select a position i.
(2) Find the marginal probability distribution of position i.
(3) Calculate the accumulated probability.
(4) Apply roulette wheel selection to select a job.
(5) Go to step (1) until all the positions are occupied.

Continue the 5-job example and suppose position 3 is selected.
The frequency of each job on position 3 is transferred in the ‘‘Fre-
quency” column in Fig. 9. Summing up the frequency of each job
obtains total frequency. Dividing each frequency by total frequency
obtains probability of each job (Shown in ‘‘Probability” column in
Fig. 9). Calculate the accumulated probability of each job (Shown
in ‘‘Accumulated Probability” column in Fig. 9) and apply roulette
wheel selection to select a job assigned to position 3.

Suppose job 4 is selected, and then eliminate job in row 4 and
position in column 3 from the association matrix. The new matrix
after elimination is shown in Fig. 10.

After assigning job 4 on position 3, the steps will be repeated
until all the positions are occupied.
3 5 4 1 2

1 2 3 5 4

5 1 2 3 4

2 4 5 3 1

4 1 2 3 5

5 3 1 2 4

2 4 5 1 3

3 4 5 2 1

5 1 2 4 3

1 3 5 4 2

Chromosome 2

Chromosome 1

Chromosome 3

Chromosome 4

Chromosome 5

Chromosome 6

Chromosome 7

Chromosome 8

Chromosome 9

Chromosome 10

Fig. 8. Summarizing the job and position
5. Numerical experiments

Two types of flowshop scheduling problems are considered to
evaluate the proposed genetic algorithm. The first one is the case
study of a chip resistor factory and the second one is from the stan-
dard benchmark instances. The first type is a real-life case. The pro-
duction information is retrieved from the shop floor. The second
type is the standard benchmark instances found in OR-Library.

Reeves (1995) provided 21 instances (titled rec01-rec41) as
standard benchmark for flowshop scheduling problems with min-
imizing makespan. These instances are used to evaluate the perfor-
mance of the proposed artificial chromosome embedded in genetic
algorithm. The standard benchmark instances are able to be found
in the OR-Library (http://www.ms.ic.ac.uk/info.html).

The numerical experiments are done for chip resistor factory
and standard benchmark instances separately.

5.1. A chip resistor factory

The flowshop production system in the chip resistor factory
consists of three printing machines. Production data are retrieved
from the shop floor directly. The number of machines is fixed as
Association Matrix

Position

1 2 3 4 5 

1 2 3 1 2 2 

2 2 1 3 2 2 

3 2 2 1 3 2 

4 1 3 1 2 3 

5 3 1 4 1 1 

Job

association in an association matrix.

http://www.ms.ic.ac.uk/info.html


Table 1
Parameter values for SGA

Parameters Values

Population size 100
Crossover rate 0.9
Mutation rate 0.5
Gmax 1000

Table 2
Average objective values of SGA and ACEGA in the chip resistor case

# of jobs SGA avg. obj value ACEGA avg. obj value

20 34,386 34,270
40 203,505 201,819
60 581,420 579,634
80 1,112,965 1,108,485
100 1,746,115 1,738,541

Table 4
Average objective values of SGA and ACEGA in solving standard benchmark

Instance (n, m) Optimum SGA avg.
obj value

ACEGA avg.
obj value

Error rate (%)

SGA ACEGA

rec01 (20,5) 1247 1250 1249 0.200 0.160
rec03 (20,5) 1109 1111 1110 0.207 0.090
rec05 (20,5) 1242 1247 1245 0.370 0.242
rec07 (20,10) 1566 1584 1574 1.137 0.511
rec09 (20,10) 1537 1564 1554 1.783 1.106
rec11 (20,10) 1431 1445 1433 0.985 0.140
rec13 (20,15) 1930 1965 1946 1.824 0.829
rec15 (20,15) 1950 1986 1964 1.831 0.718
rec17 (20,15) 1902 1951 1932 2.581 1.577
rec19 (30,10) 2093 2154 2124 2.924 1.481
rec21 (30,10) 2017 2069 2050 2.578 1.636
rec23 (30,10) 2011 2076 2047 3.212 1.790
rec25 (30,15) 2513 2615 2566 4.059 2.109
rec27 (30,15) 2373 2450 2408 3.224 1.475
rec29 (30,15) 2287 2387 2336 4.368 2.143
rec31 (50,10) 3045 3215 3136 5.580 2.989
rec33 (50,10) 3114 3185 3143 2.286 0.931
rec35 (50,10) 3277 3306 3279 0.882 0.061
rec37 (75,20) 4951 5382 5205 8.701 5.130
rec39 (75,20) 5087 5436 5278 6.861 3.755
rec41 (75,20) 4960 5411 5217 9.095 5.181
Overall

error
rate

3.080 1.622

Number of generations

M
ak

es
pa

n

990890790690590490390290190901

6100

6000

5900

5800

5700

5600

5500

5400

5300

5200

Variable
SGA
ACEGA

Fig. 11. Convergent trends of SGA and ACEGA.

7140 P.-C. Chang et al. / Expert Systems with Applications 36 (2009) 7135–7141
well as the shop floor and the number of jobs has five cases: 20, 40,
60, 80, and 100. The key parameter values for SGA were deter-
mined by conducting an design of experiment approach and the
optimal setting is reported in Table 1. The population size, cross-
over rate, mutation rate, and maximum number of generations
(Gmax) are 100, 0.9, 0.5, and 1000, respectively.

The numerical results of SGA and ACEGA are reported in Table 2.
Table 2 indicates that ACEGA outperforms SGA in all the cases.

5.2. Standard benchmark instances

Standard benchmark instances obtained from the OR-Library
are solved by SGA and ACEGA, respectively. The parameter values
of genetic algorithm part in ACEGA are the same as the settings
of SGA. There are three parameters of artificial chromosomes part
of ACEGA. The parameters are listed in Table 3. The first parameter
‘‘Starting Generation” represents that artificial chromosome mech-
anism activates from the ‘‘Starting Generation” on. The second
parameter ‘‘Interval” denotes how long the artificial chromosome
mechanism collects beset quality chromosomes. The last parame-
ter ‘‘Assignment Method” denotes the method to select a position
is dependent on the random number generated.

The optimum of each instance is listed in the third column of
Table 4. The average objective values of SGA and ACEGA are shown
in the fourth and fifth columns, respectively. Then we calculate the
difference of SGA and ACEGA with optimum for each instance in
terms of error rate. The formula of error rate is shown as follows:

Error rate ¼ Average objective value� Optimum
Optimum

� 100% ð9Þ

The error rates of ACEGA are evidently smaller than the error rates
of SGA in all 21 instances. On average, there is a 1.458% difference
between the performance of SGA and ACEGA. In other words, the
overall error rate of ACEGA is almost one half of that of SGA. This
result represents that ACEGA is very promising.

Besides the solution quality, the convergent trends of SGA and
ACEGA are depicted in Fig. 11. In this figure, the data of SGA and
ACEGA are denoted by ‘‘h” and ‘‘ ” respectively. The convergent
Table 3
The suggested parameter settings of ACEGA

Parameters Values

Starting generation 500
Interval 50
Assignment method Random assign
trends reflect that both of the two methods converge rapidly. ACE-
GA converges to the final results faster than SGA after the 90th
generation and the performance of ACEGA leads afterward.

6. Conclusion and future works

A new design, artificial chromosome, to improve the perfor-
mance of genetic search is proposed in this paper and applied to
a permutation flowshop scheduling problem in minimizing the
make span. Extensive numerical experiments were conducted.
The result indicates that artificial chromosome embedded in ge-
netic algorithm is effective and efficiency.

Further investigation will be carried out to examine whether it
is possible to generate elite chromosome through better mining
algorithm. It is also suggested that different types of flowshop
problem can be further tested such as the minimization of the
sum of job completion times, and those with more complex
requirements such as sequence dependent setup times, and to ex-



P.-C. Chang et al. / Expert Systems with Applications 36 (2009) 7135–7141 7141
plore alternative ways of reintroducing the fabricated chromosome
into the evolution process.

References

Bai, S. X., & Elhafsi, M. (1996). Transient and steady-state analysis of a
manufacturing system with setup changes. Journal of Global Optimization, 8,
349–378.

Baker, KR. (1974). Introduction to sequencing and scheduling. New York: Wiley.
Caccetta, L., & Hill, S. P. (2003). An application of branch and cut to open pit mine

scheduling. Journal of Global Optimization, 27, 349–365.
Chang, P. C., Chen, S. H., & Fan, C. Y. (2008). Mining gene structures to inject artificial

chromosomes for genetic algorithm in single machine scheduling problems.
Applied Soft Computing Journal, 8(1), 767–777.

Chang, P. C., Chen, S. H., & Lin, K. L. (2005). Two-phase sub population genetic
algorithm for parallel machine-scheduling problem. Expert Systems with
Applications, 29(3), 705–712.

Chang, P. C., Chen, S. H., & Liu, C. H. (2007). Sub-population genetic algorithm with
mining gene structures for flow shop scheduling problems. Expert Systems with
Applications, 33(3), 762–771.

Chang, P. C., Hsieh, J. C., & Liu, C. H. (2006). A case-injected genetic algorithm for
single machine scheduling problems with release times. International Journal of
Production Economics, 103, 551–564.

Chang, P. C., Wang, Y. W., & Liu, C. H. (2005a). New operators for faster convergence
and better solution quality in modified genetic algorithm. Lecture Notes in
Computer Science, 3611, 983–991.

Chen, C. L., Vempati, V. S., & Aljaber, N. (1995). An application of genetic algorithms
for flow shop problems. European Journal of Operational Research, 80, 389–396.

Dror, M., & Mullaseril, P. A. (1996). Three stage generalized flowshop: Scheduling
civil engineering projects. Journal of Global Optimization, 9, 321–344.
Framinan, J. M., Gupta, J. N. D., & Leisten, R. (2004). A review and classification of
heuristics for permutation flow-shop scheduling with makespan objective.
Journal of the Operational Research Society, 55, 1243–1255.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1, 117–129.

Goldberg, D. E., & Deb, K. (1991). A comparison of selection schemes used in genetic
algorithms. In Rawlins, G. J. E. (Ed.), Foundations of genetic algorithms (pp. 69–
93).

Iyer, S. K., & Saxena, B. (2004). Improved genetic algorithm for the permutation
flowshop scheduling problem. Computer and Operations Research, 31,
593–606.

Murata, T., & Ishibuchi, H. (1994). Performance evolution of genetic algorithms for
flowshop scheduling problems. Proceedings of first IEEE international conference
on evolutionary computation, 812–817.

Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Genetic algorithms for flowshop
scheduling problems. Computers and Industrial Engineering, 30, 1061–1071.

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computer and
Operations Research, 22, 5–13.

Reeves, C. R., & Yamada, T. (1998). Genetic algorithms, path relinking, and the
flowshop sequencing problem. Evolutionary Computation, 6, 45–60.

Reza Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with
makespan criterion: A review. International Journal of Production Research, 43,
2895–2929.

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of
permutation flowshop heuristics. European Journal of Operational Research,
165, 479–494.

Syswerda, G. (1991). Scheduling optimization using genetic algorithm. Handbook of
Genetic Algorithm, 332–349.

Wang, L., & Zheng, D. Z. (2003). An effective hybrid heuristic for flow shop
scheduling. The International Journal of Advanced Manufacturing Technology, 21,
38–44.


	Artificial chromosomes embedded in genetic algorithm for a chip resistor  scheduling problem in minimizing the makespan
	Introduction
	Literature reviews
	A chip resistor scheduling problem
	Artificial chromosome embedded in genetic algorithm
	Simple genetic algorithm
	Encoding: Integer integer coding
	Initial population generation: Random random number generation
	Fitness function and reproduction
	Crossover: Two-point two-point crossover
	Mutation: Swap swap mutation
	Stopping criterion

	Artificial chromosomes
	Association matrix
	Job assignment


	Numerical experiments
	A Chip chip resistor factory
	Standard benchmark instances

	Conclusion and future works
	References


