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ABSTRACT. Due to the combinatorial explosions in solution space for scheduling prob-
lems, the balance between genetic search and local search is an important issue when
designing a memetic algorithm [23] for scheduling problems. The main motivation of
this research is to resolve the combinatorial explosion problem by reducing the possi-
ble neighborhood combinations using guided operations to remove these inferior mowves.
We proposed a mew algorithm, termed as a Guided memetic algorithm, which is one of
the algorithms in the category of evolutionary algorithm based on probabilistic models
(EAPMs). The algorithm explicitly employs the probabilistic models which serves as a
fitness surrogate. The fitness surrogate estimates the fitness of the new solution gen-
erated by a local search operator beforehand so that the algorithm is able to determine
whether the new solution is worthwhile to be evaluated again for its true fitness. This
character distinguishes the proposed algorithm from previous EAPMs. The single ma-
chine scheduling problems are applied as test examples. The experimental results show
that the Guided memetic algorithm outperformed elitism genetic algorithm significantly.
In addition, the Guided memetic algorithm works more efficiently than previous EAPMs
and FElitism Genetic algorithm. As a result, it is a new break-through in genetic local
search with probabilistic models as a fitness surrogate.

1. Introduction. As defined by Nareyek [33], there are two search-paradigms for search:
refinement search and local search. The refinement search is iteratively narrowing process
alternating between commitment and propagation while local search conducts a search
by iteratively changing an initial state. The advantage of refinement search is that it
can be understood easily. Local search, however, can be usually computed very fast in
solving larger problems. It provides better exploiting information for realistic problems
that have more complex objective functions. Therefore, many researchers utilized the
local search to enhance the search ability. Nevertheless, a genetic local search takes the
advantages of both the refinement search and local search [17, 15, 36]. Ishibuchi et al. [23]
advocated that the importance of maintaining a balance between genetic search and local
search. The main reason is that the local search operator blindly changes the initial state
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which reduces the number of function evaluations available for genetic search because the
possible neighborhood combinations are very large. As a result, the motivation of this
research is to propose a new genetic local search algorithm which will prune away bad
moves. This new approach can maintain the balance between genetic search and local
search. In addition, the efficiency and effectiveness of the genetic local search algorithm
is expected.

To derive these expected results, this paper develops a new approach by embedding
the probabilistic model with genetic local search operator which is termed as a Guided
Memetic Algorithm. The probabilistic model is served as a fitness surrogate and we can
determine whether it is worthwhile to evaluate the real fitness of a new solution generated
by local search operator in advance. If a movement is likely to lead to an inferior solution,
the movement is abandoned. Thus, the total amount of computation time can be greatly
reduced by avoiding those bad moves generated for the local search since the combinations
of local search are huge. The balance between the genetic search and local search can be
maintained by using the probabilistic models.

The proposed algorithm actually belongs to the Evolutionary Algorithm based on Prob-
abilistic models (EAPMs) which is one of the most popular evolutionary algorithms in
recent years [7, 8, 20, 32, 35, 41]. EAPM explicitly builds a probabilistic model to present
the parental distribution. EAPM also generates solutions by sampling from the proba-
bilistic model. It is important to know how EAPM works. There are some researchers,
such as Glover and Laguna [18], who argued that certain gene structures resembles those
in other superior better chromosomes. In [11], they presented the probability of each
jobs at different positions graphically in single machine scheduling problems, which shows
that the salient genes appeared after some generations are executed in the population. It
means that some jobs are gradually converged into fixed positions. Lin and Kernighan
[29] solved the traveling salesman problem (TSP) and the results shows that 85% of the
segments in any two local optimal solutions were identical. Due to EAPM extracts ge-
netic information from parents on the fly, EAPM might be a promising method able to
capture the population information and manipulate the building block, hence, solve hard
optimization problems efficiently [40].

The probabilistic model in this research, however, is not applied directly to generate
new solutions because sampling from probabilistic model requires higher computational
cost in solving sequencing problems (See [41, 3, 11]). Instead, a guided operation will
be applied as a fitness surrogate to study the feasibility of a new solution. As a result,
the proposed algorithm combines the advantages of probabilistic model and local search
to work more efficiently than refinement search [33]. The computational efficiency of the
algorithm is therefore expected.

The rest of the paper is organized as follows: Section 2 is the literature review of sched-
uling problems, particularly for single machine scheduling problems with the minimization
of earliness/tardiness cost. Section 3 is the detail explanations of the Guided Memetic
Algorithm, Section 4 is the experimental results whereas the proposed algorithm was eval-
uated by using the single machine scheduling problems with the objective of minimizing
the earliness/tardiness cost, Section 5 is the discussions and conclusions of this research.

2. Literature Review of the Single-machine Scheduling Problems. Scheduling
problems arise in almost every area of human endeavor and defy any simple and succinct
classification [19]. Various scheduling problems can be found in [2, 6, 5, 16, 21, 22, 12]. As
a generalization of single-machine scheduling to minimize the weighted tardiness [26], the
single-machine scheduling problem to minimize the total weighted earliness and tardiness
costs is strongly NP-hard. The earlier works on this problem were due to [10, 14, 39].
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[9] dealt with a similar problem with the objective of minimizing the total weighted
completion time. The problem is the same as that discussed in [9]. Later on, [4] developed
various dominance rules to solve the problem.

The earliness/tardiness scheduling problem with equal release dates and no idle time
has been considered by several authors. Both exact and heuristic approaches have been
proposed to solve the problem. Among the exact algorithm approaches, branch-and-
bound algorithms were presented by [1, 27, 28]. The lower bounding procedure of Abdul-
Razaq and Potts [1] is based on the sub-gradient optimization approach and the dynamic
programming state-space relaxation technique, whereas [27] and [28] used Lagrangian re-
laxation and the multiplier adjustment method. Among these heuristics, [34] developed
several dispatching rules and a filtered beam search procedure. In [38], the authors pre-
sented an additional dispatching rule and a greedy procedure. They also considered the
use of dominance rules to further improve the schedule obtained by the heuristics. A
neighborhood search algorithm was presented by [27].

Some research has developed dominance properties (DPs) for this category of problems
28, 37, 31, 30, 24]. DPs are employed in branch-and-bound algorithms to enhance the
fathoming procedure to be combined with other meta-heuristics, such as integrating DPs
with GA to solve the scheduling problem with earliness/tardiness penalties [13].

3. Self-Guided Memetic Algorithm. EAPM extracts the gene variable structure from
population distribution and expresses it with a probabilistic model [25]. This research
embed the probabilistic model with local search operator to reduce the number of bad
moves. The probabilistic model serves as a fitness surrogate and it can evaluate the figure
of merit beforehand. It means that the probabilistic model will calculate the probability
difference of selected genes located at different positions to determine the movement of
genes decided by local search operator. As a result, this proposed algorithm will exploit
the solution space efficiently instead of blindly searching the solution space. In this paper,
we proposed a guided memetic algorithm to solve scheduling problems and a procedure is
named guided local search. The following figure is the pseudo code of proposed algorithm.

Population: A set of solutions

generations: The maximum number of generations
P(t): Probabilistic model

t : Generation index

Initialize Population

t+—0

Initialize P(t)

while ¢ < generations do
EvaluateFitness(Population)
Selection/Elitism (Population)
P(t 4+ 1) < BuildingProbabilityModel(Selected Chromosomes)
Crossover()

Mutation()

Guided Local Search()
Lt—t+1

end while

PN T WD

— =
D= o o

F1GURE 1. Algorithm1: The main procedures of Guided Memetic Algorithm

Step 2 initializes the probability matrix P(t) by using 1/n where n is the problem size.
Step 7 builds the probabilistic model P(t) after the selection procedure. The details of
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P(t) are explained in Section 3.1. Step 8 and Step 9 explain the standard crossover and
mutation procedures. In this research, two-point center crossover and swap mutation
are applied in the crossover and mutation procedures in scheduling problems. In Step
10, probabilistic model will evaluate the goodness of the move generated by local search,
which is shown in Section 3.2.

The following sections explain the proposed algorithm in details, which at first explain
how to establish a probabilistic model and how the probabilistic model reduces the number
of bad moves in the local search procedure.

3.1. Establishing a probabilistic model. Suppose a population has M strings X!, X2
,..., XM at current generation ¢, which is denoted as Population(t). Then, ij is a binary
variable in chromosome k, which is shown in Eq 1.

Yk 1 if job 7 is assigned to position j .
1 0 Otherwise b=

The fitness of these M chromosomes is evaluated and the gene information is collected
from N best chromosomes where N < M. The N chromosomes are set as M /2 which
is a thumb-of-rule. The purpose of selecting only N best chromosomes from population
is to prevent the quality of the probabilistic model from being down-graded by inferior
chromosomes. Let P;;(t) be the probability of job i to appear at position j at the current
generation. As in PBIL [7], the probability P;;(t) is updated as follows:

N
1 , .
k=1
where A € (0,1] is the learning rate. The larger A is, the more the gene information of
the current population contributes. For the probabilistic matrix of all jobs at different

positions, they are written as Eq 3.

Pu(t+1) - Pu(t+1)
P(t+1) = : : : (3)

Pa(t+1) ... P,(t+1)

Therefore, the expected fitness of a solution X* can be estimated from the probabilistic
matrix, by means of joint probability distribution shown as follows:

Py (X*) = Py (Xfy o X = [T Pea(Xh) (4)
p=1,i=[p]

where [p] is the job at Position p in Chromosome X*.
In general, the procedures of establishing the probabilistic model include

1. Evaluating fitness of all M solutions,

2. Selecting N best solutions, and

3. Learning the joint distribution of the selected solutions. After a probabilistic model
is built up, the probabilistic model can serve as a surrogate of fitness evaluation since

the HZ:L?::[p] P,11(X]) estimates the goodness of the solution X*.

As soon as the probabilistic model P(t + 1) simplified as P in the rest of sections, it is
embedded with local search operator. It is shown in the next section.
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3.2. Guided memetic algorithm. This research enables the probabilistic difference as
the fitness surrogate to function in the local search procedure. This section demonstrates
that the probabilistic model embeds with the local search operator as an example. The
concept of this algorithm is that before the genes are moved using local search operator,
the probabilistic differences of the moved genes are evaluated before the real fitness. When
the fitness surrogate judges the new solution which is no better than the original one, the
proposed algorithm won’t evaluate the real fitness of the new solution generated by local
search operator.

On the other hand, if the fitness surrogate indicates that the new solution is better
than the original one, the real fitness value of the modified solution is evaluated. It is
obvious that, when the fitness is further improved, the original solution is replaced by
the new solution. Because the combination of local solution space is huge, the advantage
of the fitness surrogate would first screen out some bad moves in advance so the genetic
local search would not waste too many search efforts in searching bad moves.

Some local search strategies are adopted in this study. First of all, the procedure does
systematic search of the solution space. There is a heuristic rule that the neighborhood
size is up to maxNeighborhood, say 3, 5, or 7. This parameter configuration is done by
Design-of-Experiment. As a result, the local search will focus on the neighbors which are
not too far away. Second, only elite solutions are considered for local search because it is
costly for inferior solutions [23]. The local search method utilizes the 2-Opt exchanging
in the end. It is, to be sure, not limited to 2-Opt method since the probabilistic difference
can be applied to any local search method. The following pseudo code describes how the
procedure works.

X: A selected solution

Y': Solution X is modified into a new solution.

1 and j: The range of 2-Opt search

length: The problem size

A: The probabilistic difference of solution X and Y
mazEraminedSoln: The maximum number of examined solutions
EzaminedSoln: The number of solutions has been examined

X: Select an elite solution

f(X) and f(Y): Real fitness of the solution X and Y

max N etghborhood: Determine the maximum neighborhood size

FORi = 1 to length

FORj = (i + 1) to (i + maxNeighborhood)
STATE Y « 2-Opt(X, 4, j)

STATE A « FitnessSurrogate (X, Y)
IFA > 0 and ExaminedSoln< mazFExaminedSoln
IFf(X) > f(Y)

X «Y

EzaminedSoln ++

9. ENDIF

10. ENDIF

11. ENDFOR

12. ENDFOR

PN T WD

F1GURE 2. The detail procedures of Guided Local Search
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The first step is to randomly select an elite solution to do local search. It then does a
systematic local search by 2-Opt method. In Step 4, fitness surrogate is employed for the
probabilistic difference. It follows that this function evaluates the probabilistic difference
of genes moved by the local search. After that, when the probability difference is positive
and the number of current examined solution is less than the maximum number of the
examined solution, the algorithm proceeds to calculate the real fitness of the new solution.
If the new solution is better than the original solution, the original solution is replaced
by the new one in Step 7.

There is a six-job problem to present how the guided memetic algorithm works. When
there is an elite solution {536124} and the cut points are at Position 2 and 5, the new
solutions will be {521634} (see Figure Figure 3.).

X (Original solution): {5|3612|4} — Y (New Solution): {5/2163|4}
FIGURE 3. An example of 2-Opt local search

The fitness surrogate examines whether the New Solution Y is better than the Elite
solution. Eq 5 is the join probability of the Original solution X solution and the New
Solution Y.

Px=~( [ P&ENC J] PXa)
p€E(lor6),g=[p] p¢(1lor6),9=[p]

Pr~( [ PO [T PO (5)
p€E(lor6),g=[p] p¢ (lor6),9=[p]

Eq.(5) can be simplified as Eq.(6) because [ [ )¢ 1,,6) gy~ £(Xop) a0d [ [oc10r6) g= i) £ (Yop)
are equal and the two terms are greater than or equal to zero.

IS H P(Yyy) (6)
p¢(lor6),g=[p]

One more step of preventing the probability of a job at a position is zero which makes
the joint probability become insensitive, Eq.(6) is further revised as Eq.(7).

n

Py ~ Z P(Xgp) = (P32 + Pe3 + Pra + pas)
p¢(1or6),9=[p]

n

v R Z P(Yy,) = (p22 + P13 + Dea + P3s) (7)
p¢(lor6),g=[p]

At last, we subtract Py from P/ and we have the final result A in Eq.(8).

A=Py—Py (8)

If A is positive, the new solution Y is rejected because it might be inferior to the
original one. Otherwise, the solution is potentially superior to the original solution. As
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a results, this new solution is double checked by the real fitness function. When the new
solution is better than the original one, it replaces the original solutions.

This approach brings a benefit, which is when local search are put on too many efforts
in exploiting solution space, the quota for genetic search are reduced. It is the reason why
23] discussed the balance between a genetic search and a local search. As a result, the
local search with the fitness surrogate would detect bad moves although it might run the
risk of finding a local optimal. Because there is no research that utilizes the concept of
probabilistic model as a fitness surrogate, it is natural that no research brought forward
this approach in conducting local search. Consequently, this idea is also a novel one which
can be a good tool for local search algorithms.

4. Experimental Results. In order to evaluate the performance of the Guided Memetic
Algorithm with probabilistic models, it was compared with some algorithms in literature.
These algorithms are used to test the single machine scheduling problems and these in-
stances are taken from [37]. This single machine scheduling problems with the consider-
ation of minimizing the earliness and tardiness were evaluated. The problem definitions
is shown in Section 4.1. These algorithms were implemented by Java 2 (With JBuilder
JIT compiler) on Windows 2003 server (Intel Xeon 3.2 GHZ). We test the scheduling
problems provided by [37], whereas there are job 20, 30, 40, 50, 60, and 90. In all the
experiments, each instance was replicated 30 times. Sections 4.2 presented the empirical
results of single machine scheduling.

4.1. Problem statements of single machine scheduling problem. In this paper,
a deterministic single machine scheduling problem without release date is investigated
and its objective is to minimize the total sum of earliness and tardiness penalties. A
detailed formulation of the problem is described as follows: A set of n independent
jobs {J1, J2, -+, J,} has to be scheduled without preemptions on a single machine that
can handle one job at a time at most. The machine is assumed to be continuously
available from time zero onwards and unforced machine idle time is not allowed. Job
Jj,j = 1,2,--- ,n becomes available for the processing at the beginning, requires a pro-
cessing time p; and should be completed on its due date d;. For any given schedule, the
earliness and tardiness of J; can be respectively defined as E; = max (0,d; — C;) and
T; = max (0,C; — d;), where C} is the completion time of J;.

The objective is then to find a schedule that minimizes the sum of the earliness and
tardiness penalties of all jobs Z?Zl (a; E; + B;T;) where o; and [3; are the earliness and
tardiness penalties of job .J;. The inclusion of both earliness and tardiness costs in the
objective function is compatible with the philosophy of just-in-time production, which
emphasizes producing goods only when they are needed. The early cost may represent
the generating cost of completing a product early, the deterioration cost for perishable
goods or a holding (stock) cost for finished goods. The tardy cost can represent rush
shipping costs, lost sales and loss of goodwill. It is assumed that no unforced machine
idle time is allowed, so the machine is only idle when no job is currently available for
processing. This assumption reflects a production setting where the cost of machine
idleness is higher than the early cost stemming from completing any job before its due
date, or the capacity of the machine is limited when compared with its demand, so that
the machine must be kept running all the time. Some specific examples of production
arrangements with these characteristics are provided by [34] and [39]. The set of jobs
is assumed to be ready to process jobs at the beginning which is a characteristic of the
deterministic problem.
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TABLE 1. Single machine scheduling problems
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4.2. Results of single machine scheduling problems. The proposed algorithm, guided
memetic algorithm, is compared with Genetic Algorithm with Dominance Properties

(GADP), Artificial Chromosome with Genetic Algorithm (ACGA), and Guided Muta-

basic statistics results of these algorithms. For more detail results, please refer to our

solutions in the single machine scheduling problems. Table 1 is the partial results of the
website 1.

tion (EA/G) which can be found in [13], [11], and [41]. All of them evaluated 100,000

http://mail.nhu.edu.tw/~shihhsin/publications /sourceCodes/InjectionArtificial Chromosomes/Results.htm
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To verify the difference of the algorithms, ANOVA is employed in Table 2. Because
there is significant difference among these methods, in order to justify the performance
of these algorithms, Duncan pair-wise comparison is employed in Table 3.

TABLE 2. ANOVA result of the Method Comparisons in single machine
scheduling problems

Source DF Type I SS  Mean Square F Value Pr > F
instances 213 6.85E+12 32172844813 325037 <.0001
method 4 6.93E+09 1732362401  17501.8 <.0001
instances*method 852 12281545276 14414959.24  145.63 <.0001
Error 31030 3071416622 98982.17

Corrected Total 32099 6.88E+12

Duncan Grouping test shows that there is significant difference between /among subjects
if they share different alphabet. Otherwise, there are no differences between/among the
subjects. In Table 3, Duncan comparisons indicated ACGA which performed as well as
EA/G. On the other hand, GADP and guided memetic algorithm are the second group
in this comparisons and GA is the worst in the single machine scheduling problems.

TABLE 3. Duncan Grouping in testing objective values of single machine
scheduling problems

Duncan Grouping Mean N method
13982.894 6420 GA
12831.934 6420 Guided Memetic Algorithm

12827.096 6420 GADP
12813.66 6420 EA/G

QOoQwww >

12813.276 6420 ACGA

After we tested the ANOVA results in minimizing objective values, the computational
time is also examined. Table 4 and Table 5 are ANOVA and Duncan grouping results
of the CPU time comparisons, respectively. Since the CPU time is significant, Duncan
Grouping results indicated that Guided Memetic Algorithm works more efficient than
others, particularly the ACGA and EA/G. The reason is that ACGA and EA/G requires
O(n?) time when they generate a new solution by sampling from probabilistic model
in solving sequential problems. Consequently, these results show that Guided Memetic
Algorithm is very attractive because the algorithm performs well and work efficiently than
Standard Genetic Algorithm.

5. Discussions and Conclusion. The paper unveils a new concept of in local search
algorithm by using the EAPMs, which is to apply the probabilistic model evaluating the
figure of merit of a new solution beforehand generated by local search. Compared with
previous EAPM algorithms, the probabilistic model is able to determine the goodness
of the new solutions, instead of using sampling from probabilistic model to generate
solutions. Although this concept can be employed in many aspects, this paper embedded
this concept with local search operator as an example. As a result, Guided Memetic
Algorithm with probabilistic models enables the local search to process without blindly
searching. The proposed algorithm works efficiently than previous EAPMs and the elite
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TABLE 4. ANOVA result of the computation time in single machine sched-
uling problems

Source DF TypeISS Mean Square F Value Pr > F
instances 213 1.40E+05 657.88 4717.43 <.0001
method 4 481180.13  120295.03 862589 <.0001
instances*method 852  261996.18 307.51 2205.01 <.0001
Error 31030 4327.39 0.14

Corrected Total 32099 887633.05

TABLE 5. Duncan Grouping for these algorithms in testing CPU time in
single machine scheduling problems

Duncan Grouping Mean N method

11.06 6420 EA/G

2.57 6420 GADP

1.62 6420 ACGA

1.21 6420 GA

0.64 6420 Guided Memetic Algorithm

HOQ®E >

Genetic Algorithm. The proposed algorithm solved single machine scheduling problems
with minimization of earliness/tardiness cost. The experimental result indicated that the
proposed algorithm indeed performed better than elite Genetic algorithm. Although it
doesn’t outperform the previous EAPMs, the proposed algorithm, however, works more
efficiently than elite Genetic algorithm. It is because the evaluation of the probabilistic
difference of local search operator takes only a constant time. When it comes to previous
EAPMs, the time complexity is O(n?). Thus, this approach doesn’t lead to extra or
excessive computational efforts. Based on this pioneer research, researchers are able to
design an operator which integrates the proposed concept in the near future.
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