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a b s t r a c t

In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with
a learning effect. The two objectives considered are the total completion time (TC) and total
absolute differences in completion times (TADC). The objective is to find a sequence that
performs well with respect to both the objectives: the total completion time and the total
absolute differences in completion times. In an earlier study, amethod of solving bi-criteria
transportation problem is presented. In this paper, we use the methodology of solving
bi-criteria transportation problem, to our bi-criteria single machine scheduling problem
with a learning effect, and obtain the set of optimal sequences,. Numerical examples are
presented for illustrating the applicability and ease of understanding.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

During the past fifty years, the single machine scheduling problem has been studied by many researchers. A good
introduction to sequencing and scheduling, and also presenting various issues related to single machine scheduling is [1].
In single machine scheduling, various objectives such as mean flow time, mean tardiness, maximum flow time, maximum
tardiness, number of tardy jobs, weightedmean of earliness and tardiness are considered. The problem is to find a sequence
of jobs that minimizes the considered objective. In single machine scheduling, the processing time of a job is assumed to be
a constant. A well-known concept in management science literature is ‘‘learning effect’’ first discovered in [2]. Because of
this learning effect, the processing time of a job is not a constant and depends on its position in the sequence. A survey of
learning effect is given in [3].
In the context of single machine scheduling, the learning effect was first considered in [4]. The objectives considered in

[4] are minimal deviation from a common due date and minimum flow time, and these objectives are studied separately.
An assignment problem formulation is presented for each of these objectives, and the solution is obtained by solving the
assignment problem. The assignment problem formulation given in [4] with the objective of due-date assignment problem,
simultaneous minimization of total completion time and variation of completion times is presented in [5]. The scheduling
problem with a learning effect on parallel identical machines is presented in [6]. A two machine flowshop with a learning
effect, with the objective of minimizing of total completion time, is studied in [7]. In [7] there is proposed a branch and
bound algorithm to solve this problem and a heuristic algorithm is also presented to improve the efficiency of the branch
and bound technique. Some important studies considering the learning effect are: [8–12]. The bi-criteria single machine
scheduling problem with a learning effect is considered in [13] and the two objectives considered are the total completion
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time and the maximum tardiness. A branch and bound technique is presented for the solution and a heuristic algorithm is
proposed to search for optimal and near optimal solutions.
In this paper, we include the learning effect as given in [4]. The processing time of a job depends on its position in the

sequence and is given as [4]

pjl = pjlα. (1)

In the above equation, pj is the normal processing time of job j, and pjl is the processing time of job j if it is in position l of the
sequence, and α is the learning index and α < 0. From the above Eq. (1), we see that pj1 > pj2 > pj3... > pjn. For example,
if pj = 3 and α = −0.515, then pj1 = 3, pj2 = 2.0994, pj3 = 1.7037, pj4 = 1.4691, pj5 = 1.3095, and so on.
Contributions of this paper: In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a
learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion
times (TADC). The objective is to find a sequence that performswell with respect to both the objectives: the total completion
time and the total absolute differences in completion times. A method of solving the bi-criteria transportation problem is
presented in [14]. In our study, we use themethod of solving bi-criteria transportation problem [14], to our bi-criteria single
machine scheduling problem with a learning effect, and obtain the set of optimal sequences. This bi-criteria problem was
considered in an earlier study [15] without the learning effect. A parametric analysis was presented to obtain the minimum
set of optimal sequences in [15]. In that study, first the complete set of optimal solutions (CSOS) is obtained and then,
from this CSOS, the minimum set of optimal solutions (MSOS) are obtained. We also present a discussion on the parametric
analysis given in [15]. A pseudo-polynomial time dynamic programming algorithm is presented in [16] to solve this bi-
criteria problem. We also show that, in our methodology, we can directly obtain the minimum set of optimal solutions
(MSOS).

2. Aneja–Nair method of solution

In this section, we outline Aneja–Nair method [14], of solving the bi-criteria transportation problem. The algorithm
presented in [14], consists of solving the same transportation problem repeatedly but with different objectives. In each
iteration, a new efficient extreme point or the change of direction of search in the objective function is obtained. This
algorithm terminates when there is no more efficient extreme point.

Minimize z1 =
m∑
i=1

n∑
j=1

cijxij

Minimize z2 =
m∑
i=1

n∑
j=1

dijxij (2)

subject to the constraints
n∑
j=1

xij = ai, i = 1, 2, . . . ,m

m∑
i=1

xij = bj, j = 1, 2, . . . , n

xij ≥ 0, forall (i, j), (3)

where

• cij is the cost of transporting a unit from source i to destination j,
• dij is the deterioration of a unit while transporting from i to j,
• ai is the availability at i,
• bi is the requirement at j,
• xij is the amount transported from i to j.

The algorithmpresented in [14] starts with two points in the objective space. These points are z(1) and z(2). Points z(1) and
z(2) are obtained by minimizing the first objective and second objective respectively. The value of first and second objective
function at point 1 are denoted as z(1)1 , z

(1)
2 . The value of first and second objective function at point 2 are denoted as z

(2)
1 ,

z(2)2 . Using the values of z
(1)
1 , z

(1)
2 , z

(2)
1 , and z

(2)
2 , two new variables namely a

(1,2)
1 , and a(1,2)2 are determined. The value of

a(1,2)1 = |z(2)2 − z
(1)
2 |, and a

(1,2)
2 = |z(2)1 − z

(1)
1 |. The new transportation problem is formulated as

Minimize
∑
i,j

{
a(1,2)1 ∗ cij + a

(1,2)
2 ∗ dij

}
xij. (4)
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Fig. 1. Pictorial explanation of objective space.

The solution of the above transportation problem gives a new efficient extreme point or change of direction of search. If
there are alternate optimal solutions to this problem, choose an optimal solution for which

∑m
i=1

∑n
j=1 cijxij is a minimum.

Let the new extreme point obtained be point 3. The value of first and second objective function at point 3 are denoted as
z(3)1 , z

(3)
2 . This process is repeated by considering points 1 and 3 and also by considering points 2 and 3. If a new efficient

extreme point is found from points 1 and 3, the process continues with the new point along with points 1 and 3. Similarly,
if a new efficient extreme point is found from points 2 and 3, the process continues with the new point along with points
2 and 3. This algorithm terminates when there is no more efficient extreme point. The proof of validity of this algorithm is
given in [14].
Pictorial explanation: In order to understand the algorithm given in [14], we give below a pictorial representation. In
that study [14], the objective space is considered instead of the decision space for finding the extreme points on the non-
dominated set. The objective space for the bi-criteria transportation problem can be thought of as an x− y plane, in which
x-axis represents the first objective function value (z1) and y-axis represents the first objective function value (z2). Any
point in this plane gives the value of first objective function (z1) and the value of second objective function (z2) for a given
transportation problem. This is shown in Fig. 1. In this Fig. 1, the points z(1)1 , z

(1)
2 and z

(2)
1 , z

(2)
2 are shown. Also, the value of

a(1,2)1 , a(1,2)2 and the third point z(3)1 , z
(3)
2 obtained by solving (4) are shown. This process is repeated by considering points 1

and 3 and also by considering points 2 and 3.

3. Problem formulation and preliminary analysis

We consider the single machine scheduling problemwith a learning effect. A set of n independent jobs is to be processed
on a continuously available singlemachine. Themachine can process only one job at a time and job preemption and inserting
idle times are not permitted. Each job has a normal processing time pj, (j = 1, 2, . . . , n) if it is at the first position in the
sequence. The sequence is the order in which the jobs are processed on the machine. The jobs are numbered according to
shortest normal processing time rule, i.e., p1 ≤ p2 ≤ · · · ≤ pn. The two objectives considered are the total completion time
(TC) and total absolute differences in completion times (TADC). TC and TADC for a given sequence σ are

TC =
n∑
j=1

Cj

TADC =
n∑
i=1

n∑
j=i

|Ci − Cj| (5)

where Cj is the completion time of job j in the given sequence. The singlemachine scheduling problemwith a learning effect,
is to find the sequence of jobs (σ ) that simultaneously minimizes TC and TADC are shown in Eqs. (6) and (7), respectively.

fTC (σ ) =
n∑
r=1

(n− r + 1)rαp[r] =
n∑
r=1

w1,αr p[r] (6)
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Table 1
Matching algorithm for minimization of TC: α = −0.152.

Position-r 1 2 3 4
w1,αr 4.0000 2.7000 1.6924 0.8100
Sequence∗ 1 2 3 4

Table 2
Matching algorithm for minimization of TADC: α = −0.152.

Position-r 1 2 3 4
w2,αr 0.0000 2.7000 3.3848 2.4300
Sequence∗ 4 2 1 3

and

fTADC (σ ) =
n∑
r=1

(r − 1)(n− r + 1)rαp[r] =
n∑
r=1

w2,αr p[r]. (7)

In the above equations, p[r] is the normal processing time of job in position r . The quantities (n− r + 1)rα and (r − 1)(n−
r + 1)rα in the above equations, are known as positional weights. We can also see if α = 0 Eqs. (6) and (7) reduces to
the problem presented in [15]. The optimal sequence for any one of the objectives can be obtained by using a matching
algorithm [15,17].
Numerical example:We now give a small numerical example to show how the matching algorithm is used to obtain the
optimal schedule. Consider the 4 job instance of the problem given in [15]. The normal processing time of these jobs are
p1 = 1, p2 = 2, p3 = 3, and p4 = 4. Let the value of learning rate α = −0.152.
Consider only the first objective i.e., TC: The problem is to find the sequence of jobs (σ ) that minimizes

fTC (σ ) =
n∑
r=1

(n− r + 1)rαp[r] (8)

fTC (σ ) = 4 ∗ 1αp[1] + 3 ∗ 2αp[2]2 ∗ 3αp[3] + 1 ∗ 4αp[4]. (9)

The optimal sequence obtained for the above problem using the matching algorithm is {1 2 3 4}. The positional weights
obtained from Eq. (6) are given in Table 1. The details of obtaining the optimal sequence using the matching algorithm is
given in Appendix. The value of TC obtained for this sequence {1 2 3 4} is 17.7173. The value of TADC obtained for this
sequence {1 2 3 4} is 25.2746.
Consider only the second objective; i.e., TADC: The problem is to find the sequence of jobs (σ ) that minimizes

fTADC (σ ) =
n∑
r=1

(r − 1)(n− r + 1)rαp[r] (10)

fTADC (σ ) = 3 ∗ 2αp[2] + 4 ∗ 3αp[3] + 3 ∗ 4αp[4]. (11)

The optimal sequence obtained for the above problem using the matching algorithm is {4 2 1 3}. The positional weights
obtained from Eq. (10) are given in Table 2. The details of obtaining the optimal sequence using the matching algorithm
is given in Appendix. The value of TADC obtained for this sequence {4 2 1 3} is 16.0749. The value of TC obtained for this
sequence {4 2 1 3} is 25.5224. Our objective is to find the sequence of jobs that performs well with respect to both the
objectives TC and TADC . In the next section, we describe the methodology of obtaining the set of sequences that performs
well with respect to both the objectives TC and TADC , using the method given in [14].

4. Aneja–Nair method to bi-criteria single machine scheduling

Our interest lies in finding a sequence that minimizes both TC and TADC . Now, we will show how the bi-criteria problem
in single machine scheduling with a learning effect can be solved to obtain the minimum set of optimal schedules using
Aneja–Nair algorithm [14].
First, wewill show the one to one correspondence of variables between bi-criteria transportation problem and bi-criteria

singlemachine scheduling problemwith a learning effect. The one to one correspondence between the twoproblems is given
in Table 3. Once this is known, then we can apply the Aneja–Nair method to obtain the minimum set of optimal sequences.
The algorithm [14] for our problem is that of solving the single-machine scheduling problem (with a learning effect)

repeatedly but with different objectives. In each iteration, we obtain an optimal sequence (efficient point). In this manner,
at any iteration, we are solving the single machine scheduling (with a learning effect) problem with a single (but different)
objective function, using the matching algorithm given in [17]. We present a numerical example for illustration.
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Table 3
One to one correspondence between the two problems.

Bi-criteria transportation problem Bi-criteria single machine scheduling problem

z1 TC first objective
z2 TADC second objective
cij (n− r + 1) ∗ rα =w1,αr
dij (r − 1)(n− r + 1) ∗ rα =w2,αr
Extreme point optimal sequence

Table 4
Matching algorithm for minimization of (12):α = −0.152.

Position-r 1 2 3 4
w1,αr 36.7988 45.9131 41.9887 26.4985
Sequence∗ 3 1 2 4

Table 5
Matching algorithm for minimization of (13):α = −0.152.

Position-r 1 2 3 4
w1,αr 24.3396 26.1698 22.5093 13.6953
Sequence∗ 2 1 3 4

Numerical example:We now use the same 4 job problem instance given in [15], with a learning effect (α = −0.152). We
show how to apply Aneja and Nair method [14] and obtain the minimum set of optimal schedules. The normal processing
time of these jobs are p1 = 1, p2 = 2, p3 = 3, and p4 = 4. The value of learning rate α = −0.152.
Following Aneja and Nair [14], we first obtain point 1 in the objective space. This is obtained by minimizing z1 the first

objective; i.e., the total completion time (TC). Thepositionalweights and the optimal sequence obtained are shown in Table 1.
The optimal sequence obtained is {1 2 3 4}. The value of z1 for this sequence is 17.7173. The value of z2 the second objective;
i.e., the total absolute differences in completion times (TADC), is 25.2746. Hence, z(1)1 = 17.7173, and z

(1)
2 = 25.2746.

We now obtain point 2 in the objective space. This is obtained by minimizing z2 the second objective; i.e., the total
absolute differences in completion times (TADC). The positional weights and the optimal sequence obtained are shown in
Table 2. The optimal sequence obtained is {4 2 1 3}. The values of z1 and z2 for this sequence ({4 2 1 3}) are 25.5224 and
16.0749 respectively. Hence, z(2)1 = 25.5224, and z

(2)
2 = 16.0749.

As mentioned in [14], we now use the points 1 and 2, and obtain the values of a(1,2)1 = |z(2)2 − z
(1)
2 | = 9.1997, and

a(1,2)2 = |z(2)1 − z
(1)
1 | = 7.8051. The new single machine scheduling problem is formulated as to find the sequence of jobs

(σ ) that minimizes

f (σ ) =
n∑
r=1

a(1,2)1 ∗ (n− r + 1)rαp[r] +
n∑
r=1

a(1,2)2 (r − 1)(n− r + 1)rαp[r]. (12)

The positional weights arewc,αr = a
(1,2)
1 ∗ (n− r+ 1)rαp[r]+ a

(1,2)
2 (r− 1)(n− r+ 1)rαp[r]. The positional weights (wc,αr ) for

the above combined problem are: wc,α1 = 36.7988, w
c,α
2 = 45.9131, w

c,α
3 = 41.9887, and w

c,α
4 = 26.4985. The positional

weights and the optimal sequence obtained are shown in Table 4. The optimal sequence obtained with these weights is
{3 1 2 4}. The values of z1 and z2 for this sequence ({3 1 2 4}) are 21.3249 and 19.1897 respectively. We call this point 3
in the objective space and z(3)1 = 21.3249, and z

(3)
2 = 19.1897. We now use the points 1 and 3, and obtain the values of

a(1,3)1 = |z(3)2 −z
(1)
2 | = 6.0849, and a

(1,3)
2 = |z(3)1 −z

(1)
1 | = 3.6079. The new singlemachine scheduling problem is formulated

as to find the sequence of jobs (σ ) that minimizes

f (σ ) =
n∑
r=1

a(1,3)1 ∗ (n− r + 1)rαp[r] +
n∑
r=1

a(1,3)2 (r − 1)(n− r + 1)rαp[r]. (13)

The positional weights are wc,αr = a
(1,3)
1 ∗ (n − r + 1)rαp[r] + a

(1,3)
2 (r − 1)(n − r + 1)rαp[r]. The positional weights

(wc,αr ) for the above combined problem are: w
c,α
1 = 24.3396, w

c,α
2 = 26.1698, w

c,α
3 = 22.5093, and w

c,α
4 = 13.6953.

The positional weights and the optimal sequence obtained are shown in Table 5. The optimal sequence obtained with these
weights is {2 1 3 4}. The values of z1 and z2 for this sequence ({2 1 3 4}) are 18.2173 and 22.5746 respectively. We call this
point 4 in the objective space and z(4)1 = 18.2173, and z

(4)
2 = 22.5746. We now use points 2 and 3, and obtain the values of

a(2,3)1 = |z(3)2 −z
(2)
2 | = 3.1148, and a

(2,3)
2 = |z(3)1 −z

(2)
1 | = 4.1975. The new singlemachine scheduling problem is formulated

so as to find the sequence of jobs (σ ) that minimizes

f (σ ) =
n∑
r=1

a(2,3)1 ∗ (n− r + 1)rαp[r] +
n∑
r=1

a(2,3)2 (r − 1)(n− r + 1)rαp[r]. (14)
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Table 6
Matching algorithm for minimization of (14):α = −0.152.

Position-r 1 2 3 4
w1,αr 12.4592 19.7433 19.4794 12.7230
Sequence∗ 4 1 2 3

The positional weights arewc,αr = a
(2,3)
1 ∗ (n− r+ 1)rαp[r]+ a

(2,3)
2 (r− 1)(n− r+ 1)rαp[r]. The positional weights (wc,αr ) for

the above combined problem are: wc,α1 = 12.4592, w
c,α
2 = 19.7433, w

c,α
3 = 19.4794, and w

c,α
4 = 12.7230. The positional

weights and the optimal sequence obtained are shown in Table 6. The optimal sequence is obtained with these weights is
{4 1 2 3}. The values of z1 and z2 for this sequence ({4 1 2 3}) are 24.5149 and 16.7597 respectively. We call this point 5 in
the objective space and z(5)1 = 24.5149, and z

(5)
2 = 16.7597. When we use the points 1 and 4, we obtain the same optimal

sequence {1 2 3 4}. When, we use the points 3 and 4, we obtain the same optimal sequence obtained is {3 1 2 4}. When we
use the points 3 and 5, we obtain the same optimal sequence {3 1 2 4}. When we use the points 2 and 5, we obtain the same
optimal sequence {4 1 2 3}. There are no other optimal sequences and so the algorithm terminates.
Based on the above, the minimum set of optimal sequences to this problem is: {1 2 3 4}, {4 2 1 3}, {3 1 2 4}, {2 1 3 4}, and

{4 1 2 3}.
It is shown in [15] that the cardinality of the setMSOS is n, when the learning effect is not considered; i.e., α = 0. We can

see from this example, that the cardinality of the setMSOS is not n, when the learning effect is included; i.e., α 6= 0.

5. Discussions

This bi-criteria single machine scheduling problem without a learning effect (α = 0) is studied in Bagchi [15]. In that
study, a parametric analysis is carried out. In the parametric analysis, the objective is to find the sequence (σ ) thatminimizes

f (σ ) = δ ∗
n∑
r=1

TC + (1− δ) ∗
n∑
r=1

TADC (15)

f (σ ) = δ ∗
n∑
r=1

(n− r + 1)p[r] + (1− δ) ∗
n∑
r=1

(r − 1)(n− r + 1)p[r]. (16)

The value of δ is restricted to the open interval (0,1). For any given value of δ, the optimal sequence can be obtained by using
the matching procedure. In that study [15], two sets of sequences namely Complete Set of Optimal Schedules (CSOS), and
Minimum Set of Optimal Schedules (MSOS), are defined. The set CSOS has the property that for any value of δ from (0,1), all
optimal solutions to (15) are members of this set. The set MSOS has the property that for any value of δ from (0,1), at least
one and almost of the optimal solutions to (15) are members of this set. So MSOS is a subset of CSOS.
It is shown in [15] that there are (n− 1) distinct values of δ given by

δi =
n− i
n− i+ 1

i = 1, 2, . . . , (n− 1). (17)

A fast algorithm for obtaining the CSOS is given in [15]. A dynamic programming approach is presented in [16]. In that
study, a condition on δi is given by considering three adjacent extreme points. The minimal set of optimal sequences are
called δ-efficient sequences in [16]. It was shown in Bagchi [15] that the cardinality of the set MSOS is n, and an O(n2)
algorithm is presented to obtain the set MSOS. We present a numerical example to show the sets CSOS and MSOS.
Numerical example:Wenowuse the same 4 job problem given in Bagchi [15], without a learning effect (α = 0). The normal
processing time of these jobs are p1 = 1, p2 = 2, p3 = 3, and p4 = 4. For this 4 job bi-criteria problem, there are 3 distinct
values of δ. They are: δ1 = 0.5, δ2 = 2/3, and δ3 = 0.75.
We consider the value of δ = 0.5. The objective is to find the sequence (σ ) that minimizes

f (σ ) = 0.5 ∗
n∑
r=1

TC + 0.5 ∗
n∑
r=1

TADC (18)

f (σ ) = 0.5 ∗
n∑
r=1

(n− r + 1)p[r] + 0.5 ∗
n∑
r=1

(r − 1)(n− r + 1)p[r]. (19)

The positional weights (wcr ) for the above combined problem are: w
c
1 = 2.0000, wc2 = 3.0000, wc3 = 3.0000, and

wc4 = 2.0000. We see that the positional weights w
c
1 = wc4, and w

c
2 = wc3. Because of this, we obtain four sequences

that are optimal. The four optimal sequences are: {3 1 2 4}, {3 2 1 4},{4 1 2 3}, and {4 2 1 3}. For all these four sequences, the
value of δ ∗

∑n
r=1 TC + (1− δ) ∗

∑n
r=1 TADC is the same and the value is 23.

We consider the value of δ = 2/3. We conduct a similar analysis as done above. We obtain two sequences that are
optimal. The two optimal sequences are: {2 1 3 4} and {3 1 2 4}. For the two sequences, the value of δ ∗

∑n
r=1 TC + (1− δ) ∗∑n

r=1 TADC is the same and the value is 23.
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We consider the value of δ = 3/4. We conduct a similar analysis as done above. We obtain two sequences that are
optimal. The two optimal sequences are: {1 2 3 4} and {2 1 3 4}. For the two sequences, the value of δ ∗

∑n
r=1 TC + (1− δ) ∗∑n

r=1 TADC is the same and the value is 22.50.
The complete set of optimal schedules (CSOS) and the minimum set of optimal schedules (MSOS) are:
CSOS : {{1 2 3 4}, {2 1 3 4}, {3 1 2 4}, {3 2 1 4}, {4 1 2 3}, {4 2 1 3}}.
MSOS : {{1 2 3 4}, {2 1 3 4}, {3 1 2 4}, {4 2 1 3}}.

Aneja–Nairmethod:Wenowshowhow theAneja–Nairmethodobtains theMSOS for the above example,without a learning
effect (α = 0). When α = 0, we use the key idea given in [14]. The key idea is that when there is more than one optimal
solution, choose an optimal solution for which z1 is minimum.
Following Aneja and Nair [14], we first obtain point 1 in the objective space. This is obtained by minimizing z1 the first

objective; i.e., the total completion time (TC). The positional weights and the optimal sequence obtained is {1 2 3 4}. The
value of z1 for this sequence is 20.0000. The value of z2 the second objective; i.e., the total absolute differences in completion
times (TADC), is 30.0000. Hence, z(1)1 = 20.0000, and z

(1)
2 = 30.0000.

We now obtain point 2 in the objective space. This is obtained by minimizing z2 the second objective; i.e., the total
absolute differences in completion times (TADC). The positional weights are: w21 = 0.0000, w

2
2 = 3.0000, w

2
3 = 4.0000,

andw24 = 3.0000. We see that the positional weightsw
2
2 = w

2
4 . Because of this, we obtain two sequences that are optimal.

The two optimal sequences are: {4 2 1 3} and {4 3 1 2}. It is given in Aneja and Nair [14] that when there are more than
one optimal solution, choose an optimal solution for which z1 is minimum. The value of z1 for the sequence {4 2 1 3} is 27,
and the value of z1 for the sequence {4 3 1 2} is 29. Hence, we choose the sequence {4 2 1 3}. The values of z1 and z2 for this
sequence ({4 2 1 3}) are 27.0000 and 19.0000 respectively. Hence, z(2)1 = 27.0000, and z

(2)
2 = 19.0000.

As mentioned in [14], we now use the points 1 and 2, and obtain the values of a(1,2)1 = |z(2)2 − z
(1)
2 | = 11.0000, and

a(1,2)2 = |z(2)1 − z
(1)
1 | = 7.0000. The new single machine scheduling problem is formulated so as to find the sequence of jobs

(σ ) that minimizes

f (σ ) =
n∑
r=1

a(1,2)1 ∗ (n− r + 1)p[r] +
n∑
r=1

a(1,2)2 (r − 1)(n− r + 1)p[r]. (20)

The positional weights (wcr ) for the above combined problem are: w
c
1 = 44.0000, w

c
2 = 54.0000, w

c
3 = 50.0000, and

wc4 = 32.0000. The optimal sequence obtained with these weights is {3 1 2 4}. The values of z1 and z2 for this sequence
({3 1 2 4}) are 23.0000 and 23.0000, respectively. We call this point 3 in the objective space and z(3)1 = 23.0000, and
z(3)2 = 23.0000.
We nowuse the points 1 and 3, and obtain the values of a(1,3)1 = |z(3)2 −z

(1)
2 | = 7.0000, and a

(1,3)
2 = |z(3)1 −z

(1)
1 | = 3.0000.

The new single machine scheduling problem is formulated so as to find the sequence of jobs (σ ) that minimizes

f (σ ) =
n∑
r=1

a(1,3)1 ∗ (n− r + 1)p[r] +
n∑
r=1

a(1,3)2 (r − 1)(n− r + 1)p[r]. (21)

The positional weights (wcr ) for the above combined problem are: w
c
1 = 28.0000, w

c
2 = 30.0000, w

c
3 = 26.0000, and

wc4 = 16.0000. The optimal sequence obtained with these weights is {2 1 3 4}. The values of z1 and z2 for this sequence
({2 1 3 4}) are 21.0000 and 27.0000 respectively. We call this point 4 in the objective space and z(4)1 = 21.0000, and
z(4)2 = 27.0000.
We nowuse the points 2 and 3, and obtain the values of a(2,3)1 = |z(3)2 −z

(2)
2 | = 4.0000, and a

(2,3)
2 = |z(3)1 −z

(2)
1 | = 4.0000.

The new single machine scheduling problem is formulated so as to find the sequence of jobs (σ ) that minimizes

f (σ ) =
n∑
r=1

a(2,3)1 ∗ (n− r + 1)p[r] +
n∑
r=1

a(2,3)2 (r − 1)(n− r + 1)p[r]. (22)

The positional weights (wcr ) for the above combined problem are: w
c
1 = 16.0000, w

c
2 = 24.0000, w

c
3 = 24.0000, and

wc4 = 16.0000. We see that the positional weights w
c
1 = w

c
4, and w

c
2 = w

c
3. Because of this, we obtain four sequences that

are optimal. The four optimal sequences are: {3 1 2 4}, {3 2 1 4}, {4 1 2 3}, and {4 2 1 3}. Of these four sequences, the sequence
with a minimum value of z1 is chosen. The sequence with a minimum z1 is the sequence {4 2 1 3}.
In this manner, we obtain the minimum set of optimal schedules (MSOS) and the sequences are:
MSOS : {{1 2 3 4}, {2 1 3 4}, {3 1 2 4}, {4 2 1 3}}.

It is shown by [15] that there are (n− 1) distinct values of δ given by the Eq. (17). Using these distinct values, it is shown
in [15] that the cardinality of the set MSOS is n, when the learning effect is not considered; i.e., α = 0. When the learning
effect is included i.e., α 6= 0, the Eq. (17) is not true and hence the cardinality of the setMSOS is not n. This fact is shown in
this example.
The effect of learning in scheduling problems has attracted many researchers and some of the recent studies are given

in [18–23].
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6. Conclusions

In a manufacturing system, workers are involved in doing the same job or activity repeatedly. Because of repeating the
same job or activity, the workers start learning more about the job or activity. Because of the learning, the time to complete
the job or activity starts decreasing, which is known as ‘‘learning effect.’’ Because of this learning effect, the processing time
of a job is not a constant and depends on its position in the sequence. In this paper, we considered the bi-criteria single
machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time
(TC) and total absolute differences in completion times (TADC). We used Aneja–Nair [14] method to find a sequence that
performswell with respect to both the objectives: the total completion time and the total absolute differences in completion
times. In an earlier study [15] this bi-criteria problem is considered without the learning effect, and a parametric analysis is
presented to obtain theminimum set of optimal sequences. In this study, we used the Aneja–Nair method [14] of solving bi-
criteria transportation problem, to obtain the set of optimal sequences, to our bi-criteria singlemachine scheduling problem
with a learning effect. A discussion is presented on the parametric analysis given in [15], and the methodology used in our
study. We have also presented numerical examples for ease of understanding.
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Appendix

Numerical example:We now give a small numerical example to show how the matching algorithm is used to obtain the
optimal sequence. Consider the 4 job problem given in [15]. The normal processing time of these jobs are p1 = 1, p2 =
2, p3 = 3, and p4 = 4. Let the value of learning rate α = −0.152.
We first consider only the first objective i.e.,TC . The problem is to find the sequence of jobs (σ ) that minimizes

fTC (σ ) =
n∑
r=1

(n− r + 1)rαp[r] (23)

fTC (σ ) = 4 ∗ 1αp[1] + 3 ∗ 2αp[2]2 ∗ 3αp[3] + 1 ∗ 4αp[4]. (24)

The positional weights obtained from Eq. (6) arew1,α1 = 4.0000,w
1,α
2 = 2.7000,w

1,α
3 = 1.6924, andw

1,α
4 = 0.8100. In the

matching algorithm, the optimal sequence is obtained by matching the positional weights in descending order with jobs in
ascending order of their normal processing times. The positional weights and the optimal sequence obtained are shown in
Table 1. The optimal sequence obtained is {1 2 3 4}, when we consider only the first (TC) objective.
The value of TC for this sequence {1 2 3 4} is obtained as follows:

z1 =
n∑
r=1

w1,αr p[r]. (25)

In the above equation p[r] is the normal processing time of job in position r . We have job 1 in position 1, job 2 in position 2,
job 3 in position 3, and job 4 in position 4. Hence, z1 is

z1 = w
1,α
1 p1 + w

1,α
2 p2 + w

1,α
3 p3 + w

1,α
4 p4

z1 = 4.0000 ∗ 1+ 2.7000 ∗ 2+ 1.6924 ∗ 3+ 0.8100 ∗ 4 = 17.7173. (26)

The value of TADC for this sequence {1 2 3 4} is obtained as follows:

z2 =
n∑
r=1

w2,αr p[r]. (27)

We have job 1 in position 1, job 2 in position 2, job 3 in position 3, and job 4 in position 4. Hence, z2 is

z2 = w
2,α
1 p1 + w

2,α
2 p2 + w

2,α
3 p3 + w

2,α
4 p4

z2 = 0.0000 ∗ 1+ 2.7000 ∗ 2+ 3.3848 ∗ 3+ 2.4300 ∗ 4 = 25.2746. (28)

We now consider only the second objective; i.e.,TADC . The problem is to find the sequence of jobs (σ ) that minimizes

fTADC (σ ) =
n∑
r=1

(r − 1)(n− r + 1)rαp[r] (29)

fTADC (σ ) = 3 ∗ 2αp[2] + 4 ∗ 3αp[3] + 3 ∗ 4αp[4]. (30)
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The positional weights obtained from Eq. (7) arew2,α1 = 0.0000,w
2,α
2 = 2.7000,w

2,α
3 = 3.3848, andw

2,α
4 = 2.4300. In the

matching algorithm, the optimal sequence is obtained by matching the positional weights in descending order with jobs in
ascending order of their normal processing times. The positional weights and the optimal sequence obtained are shown in
Table 2. The optimal sequence obtained is {4 2 1 3}, when we consider only the second (TADC) objective.
The value of TC for this sequence {4 2 1 3} is obtained as follows:

z1 =
n∑
r=1

w1,αr p[r]. (31)

We have job 4 in position 1, job 2 in position 2, job 1 in position 3, and job 3 in position 4. Hence, z1 is

z1 = w
1,α
1 p4 + w

1,α
2 p2 + w

1,α
3 p1 + w

1,α
4 p3

z1 = 4.0000 ∗ 4+ 2.7000 ∗ 2+ 1.6924 ∗ 1+ 0.8100 ∗ 3 = 25.5224. (32)

The value of TADC for this sequence {4 2 1 3} is obtained as follows:

z2 =
n∑
r=1

w2,αr p[r]. (33)

We have job 4 in position 1, job 2 in position 2, job 1 in position 3, and job 3 in position 4. Hence, z2 is

z2 = w
2,α
1 p4 + w

2,α
2 p2 + w

2,α
3 p1 + w

2,α
4 p3

z2 = 0.0000 ∗ 4+ 2.7000 ∗ 2+ 3.3848 ∗ 1+ 2.4300 ∗ 3 = 16.0749. (34)
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