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Abstract. Recently, the single machine scheduling problem with past-sequence-dependent
(p-s-d) setup times is getting more attentions from academic researchers and industrial
practitioners. The past-sequence-dependent setup times are proportional to the length of
already scheduled jobs. It is shown that for a number of objective functions this schedul-
ing problem can be solved in O(n log n) time. In this paper, we extend the analysis of the
problem with the total absolute difference in completion times (TADC) as the objective
function. This problem is denoted as 1/spsd/TADC in [1]. Let s[j] and p[j] be the setup
time and processing time of a job occupying position j in the sequence respectively, and
s[j] is defined as s[j] = γ

∑j−1
i=1 p[i], where γ is a normalizing constant. In this paper, we

present a parametric analysis of γ on the 1/spsd/TADC problem. We show analytically
the number of optimal sequences and the range of γ in which each of the sequence is
optimal. We prove that the number of optimal sequences is {1 +

∑x
k=1(2k)} if n is odd,

and {1+
∑x

k=1(2k−1)} if n is even. The value of x is bn
2 c−1 when n is odd, and x is n

2
when is even. The number of optimal sequences depends only on n, the number of jobs,
and not on γ. We also show analytically that when γ > (n−3)

2(n−2) , the optimal sequence is
unique and is obtained by placing the longest job in first position and the rest of the jobs
in SPT order in positions 2 to n.

1. Introduction. In a recent study [1], the concept of past-sequence-dependent setup
times is introduced in the well-known single machine scheduling problem. In their study,
the setup time is dependent on the jobs that are already scheduled. The objectives con-
sidered in their study are minimizing maximum completion time (Cmax), total completion
time (TC), total absolute difference in completion times (TADC), and a bi-criterion ob-
jective function with TC and TADC. It is shown in their study that the single machine
scheduling problem (with past-sequence-dependent setup times) with the above objec-
tives can be solved in O(n log n) time. The learning effect has been included by [2]
in the single machine scheduling problem with past-sequence-dependent setup times. In
this study [2], a set of objectives including Cmax, TC, TADC, along with minimizing
the sum of earliness, tardiness and common due date (ETCP ) penalties is considered.
Polynomial time algorithms are proposed by [2] to obtain the optimal solution for the
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objective functions considered. An extension of single machine scheduling problem with
past-sequence-dependent setup times with due dates is presented by [3]. It is shown by
[3] that minimizing total lateness, total tardiness (with agreeable due dates), maximum
lateness (with agreeable due dates), maximum tardiness (with agreeable due dates) are
solvable in polynomial time. The algorithm given by [3] does not guarantee optimal
solution when minimizing the number of tardy jobs, maximum lateness and maximum
tardiness are considered. References [4] and [5] presents a survey of scheduling with
startup times. But in these surveys they do not consider the past-sequence-dependent
setup times. A parametric analysis provided by [6] for a given learning index α was pre-
sented to show the range of δ in which a sequence is optimal. The parametric approach is
adopted in this research in dealing with this single machine scheduling with setup times.
To the best of our knowledge, reference [1] is the first in the literature to introduce the
concept of past-sequence-dependent setup times in single-machine scheduling problems.

In this paper, we consider the non-preemptive single machine scheduling problem. A
batch of n independent jobs to be processed on a continuously available single machine.
The machine can process only one job at a time and job splitting and inserting idle times
are not permitted. All the jobs are available at time zero. Each job has a processing
time pj, (j = 1, 2, ..., n). Let s[j] and p[j] be the setup time and processing time of a job
occupying position j in the sequence respectively, and s[j] is defined as

s[j] = γ

j−1∑
i=1

p[i] j = 2, 3, ..., n s[1] = 0, (1)

where γ ≥ 0 is a normalizing constant. In the above Eq.(1), the actual length of the
setup time depends on the value of γ. Reference [1] considered the following scheduling
problems with past-sequence-dependent setup times given by equation (1). Problem.(i):
1/spsd/Cmax; Problem.(ii):1/spsd/TC; Problem.(iii):1/spsd/TADC; Problem.(iv):1/spsd/BC.
It is shown in [1] that the well-known shortest processing time (SPT) sequence is optimal
for both the problems Problem. (i) (1/spsd/Cmax) and Problem.(ii) (1/spsd/TC).

Contributions of this paper: We consider the problem (1/spsd/TADC). For this
problem, the optimal sequence depends on the value of γ. We present a parametric
analysis of γ on the 1/spsd/TADC problem. We show analytically the number of optimal
sequences and the range of γ in which each of the sequence is optimal. It is shown in
this paper that the number of optimal sequences is {1 +

∑x
k=1(2k)} if n is odd, and

{1 +
∑x

k=1(2k − 1)} if n is even. The value of x is bn
2
c − 1 when n is odd, and x is n

2
when is even. The number of optimal sequences depends only on n the number of jobs

and not on γ. We also show analytically that when γ > (n−3)
2(n−2)

, the optimal sequence is

unique and is obtained by placing the longest job in first position and the rest of the jobs
in SPT order in positions 2 to n.

In terms of the contribution for the industry, it is indicated by [1] that the consideration
of past-sequence-dependent setup times stems from high-tech manufacturing in which a
batch of jobs consists of a group of electronic components mounted together on an IC
board. References [7,8] also indicate the importance of scheduling problem in considering
other constraints such as transportation routing or container transfer scheduling. It is
mentioned in reference [9] that effects of Inventory Control on Bullwhip in production
planning and scheduling are very significant for manufacturing companies. In addition,
reference [10] mentioned more general manufacturing environment in which either long
setup times are common. As a result, the P-S-D problem is very important and practical
to be taken into account in most of the manufacturing factory as they are very often
encountered on the shop floor.
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In Section 2, we formally define the problem and present a motivating numerical ex-
ample for understanding the contributions of our study. In Section 3, we consider a
generalized problem and present some interesting analytical results. The conclusions of
this study is presented in Section 4.

2. Problem Definition 1/spsd/TADC. In this section, we consider the single-machine
scheduling problem with the objective of minimizing the total absolute difference in com-
pletion times (TADC). This problem is denoted as 1/spsd/TADC in the standard notation
used in literature. Reference [11] was the first to show that

TADC =
n∑

i=1

n∑
j=i

|Cj − Ci|

=
n∑

r=1

(n − r)(n − r + 1) (s[r] + p[r])

=
n∑

r=1

{
(r − 1)(n − r + 1) + γ

n∑
j=r+1

(j − 1)(n − j + 1)

}
p[r] (2)

As mentioned in [1], Eq.(2) can be viewed as scalar product of two vectors. One vector
is p[r] the vector of processing time of jobs. The other vector is vr known as positional
weights vector given as

vr = (r − 1)(n − r + 1) + γ
n∑

j=r+1

(j − 1)(n − j + 1), r = 2, 3, ..., n (3)

In the above Eq.(3), the value of v1 = 0 because s[1] is zero. It is well-known from [12]
that Eq.(2) is minimized by arranging the elements of one vector in in non-increasing
order and the elements of other vector in nondecreasing order. This is known as HLP
Theorem. Hence, for a given value of γ, using HLP theorem, the optimal sequence for
the 1/spsd/TADC problem can be obtained in O(n log n) time. It can be seen that the
optimal sequence depends on the value of γ.

Motivating Numerical Example: Let us consider the 7 job example given in [12].
The processing time of jobs are: p1 = 2, p2 = 3, p3 = 6, p4 = 9, p5 = 21, p6 = 65 and
p7 = 82. Let us consider the value of γ = 0.5.

For a given value of γ = 0.5, the positional weights (vr) are obtained from Eq.(3) as:
v1 = 0, v2 = 31, v3 = 30, v4 = 26, v5 = 20, v6 = 13, and v7 = 6. Using HLP theorem, the
optimal sequence is obtained. It is shown in [1], the optimal sequence is {7 1 2 3 4 5 6}
and the value of TADC for this sequence is 1151.

Proposition.1: We multiply (or increase) all the elements of vector vr obtained from
Eq.(3), by a factor q (q > 0) and call this vector vq

r . The optimal sequence obtained (using
HLP theorem) with this vector vq

r , will be the same optimal sequence we obtained (using
HLP theorem) with the vector vr.

Parametric analysis of γ: We know that the optimal sequence for the 1/spsd/TADC
problem depends on the value of γ. Our interest is to find the range of γ and the
corresponding optimal sequence. For this purpose, we plot the value of vr, (r = 1, 2, ..., n)
with the value of γ. For this 7 job numerical example given by [11], the positional weight
vector (vr) is given by v1 = 0, v2 = 6 + 50γ, v3 = 10 + 40γ, v4 = 12 + 28γ, v5 = 12 + 16γ,
v6 = 10 + 6γ, and v7 = 6. The variation of vr, (r = 1, 2, ..., n) for γ values in the range
(0, 0.5) is shown in Figure.1. The variation of vr with γ are linear and so we call them
as lines v1, v2, ..., v7. We see that lines v1 = 0 and v7 = 6 are independent of γ. We also
see that v1 and v2 are less than v3, v4, v5 and v6 for γ > 0. In Figure.1, we see that there
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Figure 1. Variation of vr as a function of γ

is a range of γ in which the lines vr, (r = 2, 3, ..., 6) will not intersect each other. (See for
example the range of γ = 0.30 and γ = 0.35). This implies that there is a unique optimal
sequence in that range of γ. In this range, all the vr values r = 2, 3, ..., 6 are increasing
with γ. From Proposition.1, we say that the optimal sequence in this range is unique.

Hence, in order to obtain the range of γ in which a sequence is optimal, we have to obtain
the intersection points of all lines vr, (r = 2, 3, ..., 6) for γ > 0. These intersection points
can be obtained by equating the corresponding positional weights (vr). For example, the
intersection point of lines v2 and v3 is obtained as: v2 = v3 which implies (6 + 50γ) =
(10+40γ). From this we get 10γ = 4 and hence γ = 4

10
. For this 7 job numerical example,

there are six points of intersection denoted as z1 to z6. These intersection points can also
be seen from the Figure.1. These intersection points are: Lines v2 and v3 will intersect
at point z1 = 4

10
. Lines v2 and v4 will intersect at point z2 = 6

22
. Lines v2 and v5 will

intersect at point z3 = 6
34

. Lines v2 and v6 will intersect at point z4 = 4
44

. Lines v3 and

v4 will intersect at point z5 = 2
12

. v3 and v5 will intersect at point z6 = 2
24

. We arrange
these 6 intersection points z1 to z6 in the increasing order given by {z6 z4 z5 z3 z2 z1}. We
choose a value γ in between any two consecutive values of z (say between z4 and z5) and
obtain the optimal sequence using the HLP Theorem. This sequence is optimal in the
range of γ given by z values (z4 and z5). In this manner, we obtain 7 optimal sequences.
The optimal sequences and the range of γ are shown in Table.1. Note that, we have to
use one value of 0 < γ < z6 and one value of γ > z1 and obtain the corresponding optimal
sequences.

From the above numerical example, we observe the following: The longest job (job
number 7) will always occupy the first position in the optimal sequence (because v1 = 0).
The second longest job will always occupy the last position in the optimal sequence
(because v6 < v2, v3, v4, v5 for γ > 0). The number of intersection points is 6. The



A PARAMETRIC ANALYSIS FOR SINGLE MACHINE SCHEDULING WITH PSD SETUP TIMES 5

Table 1. Range of γ and the optimal sequence for 1/spsd/TADC problem

Range of Optimal
γ Sequence

0.0 to 2
24

{7, 5, 3, 1, 2, 4, 6}
2
24

to 4
44

{7, 5, 2, 1, 3, 4, 6}
4
44

to 2
12

{7, 4, 2, 1, 3, 5, 6}
2
12

to 6
34

{7, 4, 1, 2, 3, 5, 6}
6
34

to 6
22

{7, 3, 1, 2, 4, 5, 6}
6
22

to 4
10

{7, 2, 1, 3, 4, 5, 6}
Greater than 4

10
{7, 1, 2, 3, 4, 5, 6}

number of optimal sequences is number of intersections plus one i.e., 7. This because we
have to include the value of γ for 0 < γ < z6 and γ > z1.

At any point of intersection there are two sequences that are optimal. For example,
when γ = 0.4 both the sequences {7, 2, 1, 3, 4, 5, 6} and {7, 1, 2, 3, 4, 5, 6} are optimal,
which implies that the value of TADC is same and is 1085.2. For the value of γ > 4

10
,

there are no intersections of the lines. This implies that when γ > 4
10

, the optimal
sequence is unique and is {7, 1, 2, 3, 4, 5, 6}.

3. Generalization to n Jobs. In this section, we will generalize the results for any
value of n. For this purpose, we first consider n is an odd number, and then consider the
case when n is even.

The number of jobs (n) is odd: We know that v1 = 0 and v2.v3, ..., vn are given by
Eq.(3). When n is odd, line v2 will intersect with lines v3, v4, ..., vn−1 for γ > 0. Line
v2 will intersect with vn at γ = 0. Thus, there are (n − 3) distinct intersection points
(γk > 0). The value of γk at these (n − 3) intersection points are given by

γk =
k(n − k) − (n − 1)∑k

l=2 l(n − l)
, k = 2, 3, ..., (n − 2) (4)

A detailed proof of the above Eq.(4) is given in Appendix.
Similarly, line v3 will intersect with lines v4, v5, ..., vn−2 for γ > 0. Line v3 will intersect

with lines vn−1, vn at γ ≤ 0. Thus, there are (n− 5) distinct intersection points (γk > 0).
The value of γk at these (n − 5) intersection points are given by

k(n − k) − 2(n − 1)∑k
l=3 l(n − l)

, k = 3, 4, ..., (n − 3) (5)

In the same manner, v4 will have (n − 7) intersection points (γk values) given by

k(n − k) − 3(n − 1)∑k
l=4 l(n − l)

, k = 4, 5, ..., (n − 4) (6)

These above Eqs. (5) and (6) can be easily obtained by following the steps given for
Eq.(4) in the Appendix.

We now define x = bn
2
c − 1. The line vx will intersect with lines vx+1 and vx+2 for

γ > 0. Thus, there are two intersection points. The line vx will intersect with lines
vx+3, vx+4, ..., vn for γ ≤ 0.

Lines vx+1, vx+2, ..., vn−1 will not intersect with each other for γ > 0.
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Hence, in general (when n is odd), the total number of intersection points are

(n − 3) + (n − 5) + (n − 7) + (n − 9) + ... + 2 (7)

The above Eq.(7) is the sum of even number (i.e., 2 + 4 + 6 + ...). So the total number of
intersection points is the addition of even numbers up to x terms given by

x∑
k=1

2k (8)

We know the total number of intersection points. Here, we call these intersection points
as distinct values of γ. We arrange these distinct values γ in increasing order and obtain
the optimal sequence for each range in between these distinct values γ (as done in the
example). In this manner, we obtain {1 +

∑x
k=1 2k} optimal sequences and the range of

γ in which each of these sequence is optimal.
The number of optimal sequences is number of intersections plus one. This is because

we have to consider 0 < γ < γmin and γ > γmax, where γmin and γmax are the minimum
and maximum values of distinct values of γ respectively. When n = 7, we get x = 2.
We get from Eq.(4) and Eq.(5) 4 and 2 intersection points respectively. So we obtain the
number of optimal sequences as 7.

The number of jobs (n) is even: When n is even, line v2 will intersect with lines
v3, v4, ..., vn−1 for γ > 0. Thus, there are (n−3) intersection points given by Eq.(4). Line
v3 will intersect with lines v4, v5, ..., vn−2 for γ > 0. Thus, there are (n − 5) intersection
points given by Eq. (5). In the same manner, v4 will have (n − 7) intersection points
given by Eq.(6).

We now define x = n
2
. The line vx will intersect with line vx+1 for γ > 0. Thus, there

is only one intersection point. The line vx will intersect with lines vx+2, vx+3, ..., vn for
γ ≤ 0.

Lines vx+1, vx+2, ..., vn−1 will not intersect with each other for γ > 0.
Hence, in general (when n is even), the total number of intersection points are

(n − 3) + (n − 5) + (n − 7) + (n − 9) + ... + 1 (9)

When n is even, the above Eq.(9) is the sum of odd numbers (i.e., 1 + 3 + 5 + ...). The
total number of distinct intersection points is the addition of odd numbers up to x terms
and is given by

x∑
k=1

(2k − 1) (10)

The number of optimal sequences is number of intersections plus one. This because in each
interval we have one sequence that is optimal. Hence, the number of optimal sequences
is {1 +

∑x
k=1(2k − 1)}.

When n is even, We know the total number of intersection points; i.e., we know the
distinct values of γ. We arrange these γ values in increasing order (include γ = 0). We
choose a γ value (in between two γ values given above) and obtain the sequence using the
HLP Theorem. In this manner, we obtain {1 +

∑x
k=1(2k − 1)} optimal sequences.

We also see from the values of vr that the maximum value of γ is given by the point of
intersection of v2 and v3. This maximum value of γ is denoted as γMax and is

γMax =
n − 3

2(n − 2)
(11)

Beyond this above value of γMax, there will not be any intersection. This implies that
when γ > n−3

2(n−2)
, the optimal sequence is unique and is obtained by placing the longest
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job in first position and the rest of the jobs in SPT order in positions 2 to n. This is true
for both when n is odd and even.

4. Conclusions. We considered the single machine scheduling problem with past-sequence-
dependent setup times that are proportional to the length of already scheduled jobs, that
is, with past-sequence-dependent (p-s-d) setup times. We presented a parametric analysis
(of γ) for the problem with the total absolute difference in completion times (TADC) as
the objective function denoted as 1/spsd/TADC in [1]. We have shown analytically the
set of optimal sequences and the range of γ in which each of the sequences are optimal.
We have proved that the number of optimal sequences is {1 +

∑x
k=1(2k)} if n is odd, and

{1 +
∑x

k=1(2k− 1)} if n is even. The value of x is bn
2
c− 1 when n is odd and x is n

2
when

is even. We have also shown analytically that when γ > (n−3)
2(n−2)

, the optimal sequence is

unique and is obtained by placing the longest job in first position and the rest of the jobs
in SPT order in positions 2 to n.
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v1 = 0 (12)

v2 = 1 ∗ (n − 1) + γ

n∑
j=3

(j − 1)(n − j + 1) (13)

v3 = 2 ∗ (n − 2) + γ
n∑

j=4

(j − 1)(n − j + 1) (14)

v4 = 3 ∗ (n − 3) + γ
n∑

j=5

(j − 1)(n − j + 1) (15)

.... .. ........................

vn−2 = (n − 3) ∗ 3 + γ
n∑

j=(n−1)

(j − 1)(n − j + 1) (16)

vn−1 = (n − 2) ∗ 2 + γ

n∑
j=n

(j − 1)(n − j + 1) (17)

vn = (n − 1) ∗ 1 (18)

Equating v2 and v3, we get

1 ∗ (n − 1) + γ
n∑

j=3

(j − 1)(n − j + 1) = 2 ∗ (n − 2) + γ
n∑

j=4

(j − 1)(n − j + 1) (19)

This above equation can be rewritten as

γ

[{
n∑

j=3

(j − 1)(n − j + 1)

}
−

{
n∑

j=4

(j − 1)(n − j + 1)

}]
= 2 ∗ (n − 2) − 1 ∗ (n − 1)(20)

It can be seen that

γ

[{
n∑

j=3

(j − 1)(n − j + 1)

}
−

{
n∑

j=4

(j − 1)(n − j + 1)

}]
= γ[2 ∗ (n − 2)] (21)

Hence, (20) reduces to

γ[2 ∗ (n − 2)] = 2 ∗ (n − 2) − 1 ∗ (n − 1) (22)

From the above we get

γ =
2 ∗ (n − 2) − 1 ∗ (n − 1)

[2 ∗ (n − 2)]
(23)

This above equation is the same with k = 2 in Eq.(4).
We obtain the following equations, when we equate v2 and v4:

1 ∗ (n − 1) + γ

n∑
j=3

(j − 1)(n − j + 1) = 3 ∗ (n − 3) + γ

n∑
j=5

(j − 1)(n − j + 1) (24)

γ

[{
n∑

j=3

(j − 1)(n − j + 1)

}
−

{
n∑

j=5

(j − 1)(n − j + 1)

}]
= 3 ∗ (n − 3) − 1 ∗ (n − 1)(25)

γ

[{
n∑

j=3

(j − 1)(n − j + 1)

}
−

{
n∑

j=5

(j − 1)(n − j + 1)

}]
= γ

[
4∑

j=3

(j − 1)(n − j + 1)

]
(26)
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γ

[
4∑

j=3

(j − 1)(n − j + 1)

]
= 3 ∗ (n − 3) − 1 ∗ (n − 1) (27)

From the above we get

γ =
3 ∗ (n − 3) − 1 ∗ (n − 1)

[
∑4

j=3(j − 1)(n − j + 1)]
=

3 ∗ (n − 3) − 1 ∗ (n − 1)

2 ∗ (n − 2) + 3 ∗ (n − 3)
(28)

This above equation is the same with k = 3 in Eq. (4).
We obtain the following equations, when we equate v2 and vn−1:

1 ∗ (n − 1) + γ

n∑
j=3

(j − 1)(n − j + 1) = (n − 2) ∗ 2 + γ

n∑
j=n

(j − 1)(n − j + 1) (29)

γ

[{
n∑

j=3

(j − 1)(n − j + 1)

}
−

{
n∑

j=n

(j − 1)(n − j + 1)

}]
= (n − 2) ∗ 2 − 1 ∗ (n − 1)(30)

γ

[{
n∑

j=3

(j − 1)(n − j + 1)

}
−

{
n∑

j=n

(j − 1)(n − j + 1)

}]
= γ

[
n−1∑
j=3

(j − 1)(n − j + 1)

]
(31)

γ

[
n−1∑
j=3

(j − 1)(n − j + 1)

]
= (n − 2) ∗ 2 − 1 ∗ (n − 1) (32)

From the above we get

γ =
(n − 2) ∗ 2 − 1 ∗ (n − 1)

[
∑n−1

j=3 (j − 1)(n − j + 1)]
=

3 ∗ (n − 3) − 1 ∗ (n − 1)

2 ∗ (n − 2) + 3 ∗ (n − 3) + 4 ∗ (n − 4) + ... + (n − 2) ∗ 2
(33)

This above equation is the same with k = (n − 2) in Eq.(4).


