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In this article, we consider the single-machine scheduling problem with past-sequence-dependent (p-s-d) setup
times and a learning effect. The setup times are proportional to the length of jobs that are already scheduled; i.e.
p-s-d setup times. The learning effect reduces the actual processing time of a job because the workers are involved
in doing the same job or activity repeatedly. Hence, the processing time of a job depends on its position in the
sequence. In this study, we consider the total absolute difference in completion times (TADC) as the objective
function. This problem is denoted as 1/LE, spsd/TADC in Kuo and Yang (2007) (‘Single Machine Scheduling with
Past-sequence-dependent Setup Times and Learning Effects’, Information Processing Letters, 102, 22–26). There
are two parameters a and b denoting constant learning index and normalising index, respectively. A parametric
analysis of b on the 1/LE, spsd/TADC problem for a given value of a is applied in this study. In addition, a
computational algorithm is also developed to obtain the number of optimal sequences and the range of b in which
each of the sequences is optimal, for a given value of a. We derive two bounds b* for the normalising constant b
and a* for the learning index a. We also show that, when a5 a* or b4 b*, the optimal sequence is obtained by
arranging the longest job in the first position and the rest of the jobs in short processing time order.
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1. Introduction

As mentioned in Alidaee and Landram (1996), sched-
uling problems in many real-world applications have
the characteristic of variable processing time, that is
the processing time of a job is a variable and depends
on a function of its starting time. In a recent study,
Koulamas and Kyparisis (2008) introduce the concept
of past-sequence-dependent (p-s-d) setup times in
single-machine scheduling problems. In fact, the
study is the first to consider the p-s-d setup times;
i.e. the setup time that is dependent on the jobs that
are already scheduled. In a production environment,
the workers are involved in doing the same type of
job/activity on the same machine. Hence, it is possible
for workers to learn and improve their performance.
So the processing time of a job reduces due to learning.
Biskup (1999) was the first to address the effect of
learning in the context of single-machine scheduling
problems. It is shown by Biskup (1999) that this
problem can be solved in polynomial time if the
objectives are minimisation of deviation from a
common due date and the sum of flow times. The
learning effect on a single and parallel identical
machines with the objective of minimising the flow

time are considered in Mosheiov (2001a,b). The
learning effect in a two machine flowshop scheduling
with the objective of finding the sequence of jobs that
minimises the total completion time (TC) is given by
Lee and Wu (2004). In Lee and Wu (2004), a branch
and bound technique is presented. A heuristic algo-
rithm is also presented in Lee and Wu (2004) to
improve the efficiency of the branch and bound
technique. Cheng and Wang (2000) consider the
learning effect on the processing time of jobs using a
volume dependent processing time function model.
Wang (2006) mentions in his recent study that some
single-machine scheduling problems remain polynomi-
ally solvable when deterioration and learning effect on
job processing times are involved. Cheng, Ding, and
Lin (2004) present a concise survey of scheduling with
time-dependent processing times. In a recent study,
Biskup (2008) presents a complete discussion on why
and when the learning effects might occur and a
concise review of the literature on scheduling with
learning effects. Cheng, Wang, and He (2009) further
consider the scheduling problems on parallel identical
machines with deteriorating jobs, in which the pro-
cessing time of a job is a proportional function of its
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starting times to be processed. They construct heuristic
algorithms for this parallel identical machine schedul-
ing problem and also analyse the performance of these
algorithms.

In this article, we consider the non-preemptive
single-machine scheduling problems with p-s-d setup
times along with learning effect. To the best of our
knowledge, Kuo and Yang (2007) were the first to
study the concept of p-s-d setup times along with
learning effect in single-machine scheduling problems.
The objectives considered by Kuo and Yang (2007) are
minimising the maximum completion time (Cmax), TC,
total absolute difference in completion times (TADC),
and the unit earliness, tardiness and due date penalty
(ETCP). These scheduling problems with p-s-d setup
times along with learning effect are denoted in Kuo
and Yang (2007) as

Problem (i): 1/LE, spsd/Cmax

Problem (ii): 1/LE, spsd/TC
Problem (iii): 1/LE, spsd/TADC
Problem (iv): 1/LE, spsd/ETCP.

The scheduling problem is defined in the following
manner. A set of n independent jobs is to be processed
on a continuously available single-machine. The
machine can process only one job at a time and job
splitting and inserting idle times are not permitted. All
the jobs are available at time zero. Each job has a
normal processing time pr, (r¼ 1, 2, . . . , n). The pro-
cessing time of a job after learning and occupying
position r in the sequence is given by

pl½r� ¼ p½r�ra, n ¼ 1, 2, . . . , n, ð1Þ
where a� 0 is a constant learning index. Let s[r] be
the setup time of a job occupying position r in the
sequence, and s[r] is defined as

s½1� ¼ 0,

s½r� ¼ b
Xr�1
j¼1

pl½ j � r ¼ 2, 3, . . . , n,
ð2Þ

where b� 0 is a normalising constant. In Equation (2),
the actual length of the setup time depends on the value
of b and learning index a. Let Cr denote the completion
time of job r in a sequence. It is shown in Kuo and Yang
(2007) that the well-known shortest processing time
(SPT) sequence is optimal for both Problems (i) and (ii).

1.1. Contributions of this article

We consider the problem (1/LE, spsd/TADC ). For this
problem, the optimal sequence depends on the value
of b and learning index a. We present a parametric
analysis of b on the 1/LE, spsd/TADC problem for a

given value of a. We present a computational algo-
rithm to obtain the optimal sequence and the range of
b in which each of the sequences is optimal, for a given
value of a. We derive two bounds b* for the normal-
ising constant b and a* for the learning index a. We
also show that, when a5 a* or b4 b*, the optimal
sequence is obtained by arranging the longest job in the
first position and the rest of the jobs in SPT order.

In terms of the contribution for the industry,
Koulamas and Kyparisis (2008) indicate that the
consideration of p-s-d setup times stems from high-
tech manufacturing in which a batch of jobs consists of
a group of electronic components mounted together
on an IC board. In addition, Uzsoy, Lee, and Martin-
Vega (1992) mentioned a more general manufacturing
environment in which long setup times are common.
As a result, the problem is important and practical
in industry.

2. Problem definition 1/LE, spsd/TADC

In this section, we consider the single-machine sched-
uling problem with the objective of minimising the
TADC. The TADC of the 1/LE, spsd/TADC scheduling
problem given in Kuo and Yang (2007) is

TADC ¼
Xn
i¼1

Xn
j¼i
jCj � Cij

¼
Xn
r¼1
ðr� 1Þðn� rþ 1Þ ðs½r� þ pl½r� Þ

¼
Xn
r¼1

�
ðr� 1Þðn� rþ 1Þ

þ b�
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ

�
rap½r�: ð3Þ

As mentioned in Kuo and Yang (2007), the
Equation (3) can be viewed as the scalar product of
two vectors. One vector is p[r], that is the vector of the
processing time of jobs. The other is vr, which is known
as the positional weights vector and is given as

vr ¼ ðr� 1Þðn� rþ 1Þ þ b�
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ

( )
ra,

r¼ 2, 3, . . . ,n: ð4Þ
In Equation (4), the value of v1¼ 0 because s[1] is zero
(,s½r� ¼ b

Pr�1
j¼1 P

A
½ j � and v1 is an initial weight, see also

Kuo and Yang (2007)). It is well known from Hardy,
Littlewood, and Polya (1967) that Equation (3) is
minimised by arranging the vectors vr and p[r] in
opposite orders. This is also given in Kuo and Yang
(2007) as Lemma 1. Hence, for a given value of b and a
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learning index a, the optimal sequence for the
1/spsd/TADC problem can be obtained in O(n log n)
time. It can be seen that the optimal sequence depends
on the values of both b and a.

2.1. Parametric analysis of b

The optimal sequence for the 1/LE, spsd/TADC prob-
lem depends on the value of b for a given learning
index a. Our interest in this study is to find the range of
b and the corresponding optimal sequence for a given
learning index a. The positional weight vector given by
Equation (4) plays an important role in obtaining the
optimal sequence. Hence, it is important to study the
variation of the positional weights with respect to b, to
obtain the sequence. We first present a motivating
numerical example for understanding the contributions
of this article.

2.2. Motivating numerical example

Let us consider the 7-job example given in Bagchi
(1989). The processing time of the jobs are: p1¼ 2,
p2¼ 3, p3¼ 6, p4¼ 9, p5¼ 21, p6¼ 65 and p7¼ 82. Let
us consider the value of a¼�0.152 proposed in Bagchi
(1989). For this numerical example the positional
weights are:

v1 ¼ 0� 1a ¼ 0:0000,

v2 ¼ ð6þ 50� bÞ � 2a ¼ 5:4000þ 45:0000� b,

v3 ¼ ð10þ 40� bÞ � 3a ¼ 8:4620þ 33:8484� b,

v4 ¼ ð12þ 28� bÞ � 4a ¼ 9:7200þ 22:6801� b,

v5 ¼ ð12þ 16� bÞ � 5a ¼ 9:3959þ 12:5278� b,

v6 ¼ ð10þ 6� bÞ � 6a ¼ 7:6159þ 4:5695� b,

v7 ¼ 6� 7a ¼ 4:4637:

ð5Þ

In order to study the effect of b on the optimal
sequence, we plot the above values of positional
weights vr, (r¼ 1, 2, . . . , n), with the value of b. The
variations of vr, (r¼ 1, 2, . . . , n) for b values in the
range of (0, 0.5) are shown in Figure 1. For a given
value of a, the variation of vr with b are linear and so
we call them as lines v1, v2, . . . , v7. We see that lines
v1¼ 0 and v7¼ 4.4637 are independent of b. We also
see that v1 and v7 are less than v2, v3, v4, v5 and v6 for
b4 0.

In Figure 1, we see that there is a range of b in
which the lines v2, v3, v4, v5 and v6 will not intersect
each other. This implies that the sequence will be the
same in this range. For example when b¼ 0.2, the
values of v1¼ 0, v2¼ 14.4, v3¼ 18.1117, v4¼ 14.2560,
v5¼ 11.9015, v6¼ 8.5298 and v7¼ 4.4637. The optimal
sequence obtained by using Hardy et al. (1967) is

{7, 2, 1, 3, 4, 5, 6}. When b¼ 0.25, the values of v1¼ 0,
v2¼ 16.65, v3¼ 16.9241, v4¼ 15.3900, v5¼ 12.5278, v6¼
8.7583 and v7¼ 4.4637. The optimal sequence obtained
by using Hardy et al. (1967) is {7, 2, 1, 3, 4, 5, 6}. This
implies that in this range of b (0.2–0.25) the optimal
sequence is unique. Also, note that in this range
of b (0.2–0.25) all the values of vr for r¼ 2, 3, . . . , 6
increase with b.

Let any two lines of vr (v2, v3, v4, v5 and v6) intersect
at some values of b ¼ b̂. We can see that the optimal
sequence obtained when b5 b̂ is different from the
optimal sequence obtained when b4 b̂. When b ¼ b̂,
we have two optimal sequences. Hence, in order to
obtain the range of b in which a sequence is optimal,
we have to obtain the intersection points of all lines vr
(v2, v3, v4, v5 and v6) for b4 0.

We can obtain the intersection points by equating
the positional weights vr, (r¼ 1, 2, . . . , n) given by
Equation (5). For example (a¼�0.152), the point of
intersection of lines v2 and v3 is obtained as: v2¼ v3,
which implies 5.4000þ 45.0000� b¼ 8.4620þ
33.8484� b. From this we get 11.152� b¼ 3.062 and
hence b¼ 0.2746. There are six points of intersection
for this example (n¼ 7), denoted as m1–m6 in Figure 1.
These intersection points are: lines v2 and v3 will
intersect at point m1¼ 0.2746, lines v2 and v4 will inter-
sect at point m2¼ 0.1935, lines v2 and v5 will intersect at
point m3¼ 0.1231, lines v2 and v6 will intersect at point
m4¼ 0.0548, lines v3 and v4 will intersect at point
m5¼ 0.1126 and lines v3 and v5 will intersect at point
m6¼ 0.0438.

We arrange these six intersection points m1–m6 in
the increasing order given as {m6 m4 m5 m3 m2 m1}. We
choose a value b in between any two consecutive values
of m (say between m4 and m5) and obtain the optimal
sequence using Hardy et al. (1967) {7, 2, 1, 3, 4, 5, 6}.
This sequence is optimal in the range of b given by m4

and m5. In this manner, we obtain seven optimal
sequences. The optimal sequences and the range of b

Figure 1. Variation of vr as a function of b.
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are shown in Table 1. Note that we have to use one
value of b in the range 05 b5m6 and another value of
b in the range b4m1 and obtain their corresponding
optimal sequences.

From the above numerical example, we observe the
following: the longest job ( job number 7) will always
occupy the first position in the optimal sequence
(because v1¼ 0). The second longest job will always
occupy the last position in the optimal sequence
(because v65 v2, v3, v4, v5 for b4 0). The number of
intersection points is 6. The number of optimal
sequences is equal to the number of intersections plus
one, i.e. 7. This is because we have to include the value
of b for 05 b5m6 and b4m1. At any point of
intersection there are two sequences that are optimal.
For example, when b¼ 0.2746 both the sequences
{7, 2, 1, 3, 4, 5, 6} and {7, 1, 2, 3, 4, 5, 6} are optimal,
which implies that the value of TADC is the same for
both the sequences. For the value of b4 0.2746, there
are no intersections of the lines. This implies that when
b4 0.2746, the optimal sequence is unique and is
{7, 1, 2, 3, 4, 5, 6}.

3. A computational algorithm for n jobs

In this section, we present a computational algorithm
to obtain the optimal sequence and the range of b in
which each of the sequences is optimal, for a given
value of learning index a. For a general n jobs, we need
to obtain the intersection points of the positional
weights vr, (r¼ 1, 2, . . . , n) for b4 0. The intersection
points give the range of b. Once the intersection points
are obtained, the optimal sequence is proposed by
Hardy et al. (1967). The computational algorithm is
given below.

Step 1: GIVEN: n the number of jobs, a the value of
learning index and m the index counter from zero.

Step 2:
B(n) 0
for r¼ 2 to n� 1 do
A(r)¼ (r� 1)(n� rþ 1)� ra

BðrÞ ¼ fPn
j¼rþ1 ð j� 1Þðn� jþ 1Þg � ra

end for

Step 3:
for I¼ 2 to n� 1 do
for J¼ Iþ 1 to n� 1 do

x ¼ AðJÞ�AðIÞ
BðIÞ�BðJÞ

if x¼ 0 then
Do nothing

else
Y(m)¼ x and m¼mþ 1

end if
end for

end for

Step 4: Arrange the intersection points given by Y(m)
in increasing order. Let YY(m) be the vector that is
obtained by arranging the intersection points (Y(m)) in
increasing order. Let bmin be the minimum value of
YY(m) and bmax be the maximum value of YY(m).

Step 5: Choose a value of b in between any consec-
utive values in YY(m). With this b value, first compute
the weights vr. The optimal sequence can be obtained
by arranging the elements of vr and p[r] vectors in
opposite order (Hardy et al. 1967). Choose one value
of b in the range 05 b5 bmin and obtain the optimal
sequence using Hardy et al. (1967). Also choose one
value of b in the range b4 bmax and obtain the optimal
sequence in same manner using Hardy et al. (1967).

This above algorithm will give all the optimal
sequences and the range of b in which each sequence is
optimal, for a given value of a.

3.1. Derivation of bounds

We also see from the values of vr that the maximum
value of b denoted as bmax is given by the intersection
of lines v2 and v3. This bmax value is obtained as
follows: We know that

v2 ¼ ðn� 1Þ þ b�
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ

( )
� 2a,

v3 ¼ 2� ðn� 2Þ þ b�
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ

( )
� 3a:

ð6Þ
The intersection point of lines v2 and v3 is

ðn� 1Þ þ b�
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ

( )
� 2a

¼ 2� ðn� 2Þ þ b�
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ

( )
� 3a:

Table 1. Range of b and the optimal sequence
for 1/LE, spsd/TADC problem (a¼�0.152).

Range of b Optimal sequence

05 b5m6 {7, 5, 3, 1, 2, 4, 6}
m65 b5m4 {7, 5, 2, 1, 3, 4, 6}
m45 b5m5 {7, 4, 2, 1, 3, 5, 6}
m55 b5m3 {7, 4, 1, 2, 3, 5, 6}
m35 b5m2 {7, 3, 1, 2, 4, 5, 6}
m25 b5m1 {7, 2, 1, 3, 4, 5, 6}
b4m1 {7, 1, 2, 3, 4, 5, 6}
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This reduces to

b � 2a �
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ � 3a

(

�
Xn
j¼rþ1
ð j� 1Þðn� jþ 1Þ

)

¼ 2� ðn� 2Þ � 3a � ðn� 1Þ � 2a
� �

: ð7Þ
From the above expression, we obtain bmax as

bmax ¼
2� ðn� 2Þ � 3a � ðn� 1Þ � 2a
� �
2a �Pn

j¼rþ1ð j� 1Þðn� jþ 1Þ
�3a �Pn

j¼rþ1ð j� 1Þðn� jþ 1Þ

( ) :
ð8Þ

This bmax is the bound b*. We can easily see that if

b4 b*, then the optimal sequence is obtained by

arranging the longest job in first position and the rest

of the jobs in SPT order.
From the bmax expression, we can also find the

bound on learning index a. We know that b� 0. We

find the value of a for which bmax¼ 0 and this value of

a is the bound on learning index a*. This is obtained as

2� ðn� 2Þ � 3a ¼ ðn� 1Þ � 2a: ð9Þ
From which we obtain

2a

3a
¼ 2� ðn� 2Þ
ðn� 1Þ ,

a logð2Þ � logð3Þ� � ¼ logð2� ðn� 2ÞÞ � logðn� 1Þ� �
:

ð10Þ
Hence, we obtain

a� ¼ logð2� ðn� 2ÞÞ � logðn� 1Þ� �
logð2Þ � logð3Þ� � : ð11Þ

Here also, we can see that if a5 a* then the optimal

sequence is obtained by arranging the longest job in

first position and the rest of the jobs in SPT order.

3.2. Effect of learning index a

The number of optimal sequences and the range

depends on the value of a in addition to the value of

b. For the numerical example n¼ 7, if the value of

a¼�0.8, we obtain only three sequences that are

optimal. Our computational algorithm will find the

optimal sequences and the range of b in which each of

these sequences are optimal. The results are shown in

Table 2. The reason for this is that some of the lines vr
will intersect for values of b5 0, which is not a feasible

solution.

4. Conclusions

We considered the single-machine scheduling problems
with p-s-d setup times and a learning effect. The setup
times are proportional to the length of jobs that are
already scheduled; i.e. p-s-d setup times. The actual
processing time of a job depends on its position in the
sequence because of the learning effect. In this article,
a parametric analysis of b on the 1/LE, spsd/TADC
problem for a given value of a is presented. A
computational algorithm is presented to obtain the
number of optimal sequences and the range of b in
which each of the sequences is optimal, for a given
value of a. Two bounds b* for the normalising
constant b and a* for the learning index a are derived.
It is shown that, when a5 a* or b4 b*, the optimal
sequence is obtained by arranging the longest job in
first position and the rest of the jobs in the SPT order.
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