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The goal of this research is to deduce important guidelines for designing effective Estimation of Distribu-
tion Algorithms (EDAs). These guidelines will enhance the designed algorithms in balancing the intensi-
fication and diversification effects of EDAs. Most EDAs have the advantage of incorporating probabilistic
models which can generate chromosomes with the non-disruption of salient genes. This advantage, how-
ever, may cause the problem of the premature convergence of EDAs resulted in the probabilistic models
no longer generating diversified solutions. In addition, due to overfitting of the search space, probabilistic
models cannot really represent the general information of the population. Therefore, this research will
deduce important guidelines through the convergency speed analysis of EDAs under different computa-
tional times for designing effective EDA algorithms. The major idea is to increase the population diversity
gradually by hybridizing EDAs with other meta-heuristics and replacing the procedures of sampling new
solutions. According to that, this research further proposes an Adaptive EA/G to improve the performance
of EA/G. The proposed algorithm solves the single machine scheduling problems with earliness/tardiness
cost in a just-in-time scheduling environment. The experimental results indicated that the Adaptive EA/G
outperforms ACGA and EA/G statistically significant in different stopping criteria. This paper, hence, is of
importance in the field of EDAs as well as for the researchers in studying the scheduling problems.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Estimation of Distribution Algorithms (EDAs) is one of the most
popular evolutionary algorithms in recent years (Aickelin, Burke, &
Li, 2007; Baraglia, Hidalgo, Perego, Cnuce, & Cnr, 2001; Chang,
Hsieh, Chen, Lin, & Huang, 2009b; Harik, Lobo, & Goldberg, 1999;
Muhlenbein & Paaß, 1996; Zhang, Sun, & Tsang, 2005). EDAs
explicitly learn and build a probabilistic model to capture the
parental distribution, and then samples new solutions from the
probabilistic model (Pelikan, Goldberg, & Lobo, 2002). Sampling
from probabilistic models avoids the disruption of partial domi-
nant solutions represented by the model, contrary to what usually
takes places when applying genetic operators, such as crossover
and mutation operator (Santana, Larrañaga, & Lozano, 2008). This
is the most important characteristic to distinguish EDAs and Ge-
netic Algorithms (GAs). As claimed by Zhang and Muhlenbein
(2004), EDAs might be a promising method capable of capturing
ll rights reserved.
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and manipulating the building blocks of chromosomes and, hence,
efficiently solving hard optimization problems.

EDAs have been studied extensively. The concept originated
from Ackley (1987) and Syswerda (1993) and was developed by
Baluja (1995), Baluja and Davies (1998), and extended as cGA (Har-
ik et al., 1999), UMDA (Muhlenbein & Paaß, 1996), GA-EDA (Peña
et al., 2004), Guided Mutation (EA/G) (Zhang et al., 2005), Model-
Based Evolutionary Algorithm (EA) (Zhou, Zhang, Jin, Tsang, & Oka-
be, 2005), Artificial Chromosomes with Genetic Algorithms (ACGA)
(Chang et al., 2009b), Self-Guided GA (Chen, Chang, & Zhang,
2008b), and VNS�EDAs (Santana et al., 2008). These algorithms
were classified as Estimation of Distribution Algorithms (EDA) or
Evolutionary Algorithm with Probabilistic Model (EAPMs) by
Zhang and Szeto (2005) and Pelikan et al. (2002). For a complete
review of the algorithms discussed above, please refer to Larrañaga
and Lozano (2002), Pelikan et al. (2002) and Lozano (2006).

Although the previous EDAs are promising to solve hard prob-
lems when we have no knowledge about the problems, researchers
want to know how to design an effective EDAs or revise an existing
EDAs. In addition, there are two cruxes of EDAs. First of all, EDAs
may cause the problem of overfitting the search space and cannot
represent the general information (Santana et al., 2008). Most
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Fig. 1. EA/G: MainProcedure().
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importantly, due to the premature convergence of EDAs (Chang,
Chen, & Fan, 2009a), the probabilistic models no longer generate
diversified solutions resulted in poor performance.

This paper investigates the convergency speed of EA/G and
ACGA. It is found the convergency speed of EA/G is rather fast;
however, the probabilistic models no longer generates diversified
individuals after certain generations which causes a problem of
premature convergency. Although ACGA may not converge fast, it
outperforms the EA/G significantly when sufficient computation
time is allowed. After the analysis of convergency speed, we
discovered interesting connections between intensification and
diversification effects of EDAs and that alternatives with other
algorithms. Several important guidelines are proposed and there
are numerous possibilities for the researchers to develop effective
searching algorithms. In order to show the usefulness of the guide-
lines, one guideline is implemented as an example of demonstra-
tion. The proposed algorithm is named Adaptive EA/G which
extends the EA/G to solve the NP-Hard single machine scheduling
problems with earliness/tardiness considerations in the just-in-
time production environment.

The rest of the paper is organized as follows. Sections 2 and 3
are the brief explanations of EA/G and ACGA, respectively. In Sec-
tion 4 is the review of the single machine scheduling problems that
we study in this research. Section 5 illustrates the convergency
speed of the two EDAs and some interesting guidelines are ob-
tained through the convergency analysis. As a result, various
guidelines are deducted to design effective searching algorithms
and the application of these guidelines is explained in Section 6.
In addtion, this paper proposes an Adaptive EA/G as an example
to implement these guidelines. Section 7 is the experimental re-
sults whereas the Adaptive EA/G is evaluated by using the single
machine scheduling problems. Finally, Section 8 gives conclusions
of this paper.
2. Review of EA/G

One of the key issues in the design of evolutionary algorithms is
how to generate effective offspring. The proximate optimality prin-
ciple (Glover & Laguna, 1998), an underlying assumption in most
(if not all) heuristics, assumes that good solutions have similar
structure. This assumption is reasonable for most real-world prob-
lems, e.g., the percentage of common edges in any two locally opti-
mal solutions of a traveling salesman problem obtained by the Lin–
Kernighan method is about 85% on average (Lin & Kernighan,
1973). Based on this assumption, an ideal offspring generator
should be able to produce a solution which is close to the best solu-
tions found so far. Suppose the current population in an evolution-
ary algorithm with local search consists of the best locally optimal
solutions found so far, a new solution generated by the conven-
tional mutation is close (similar) to its parent, but may be far away
from other better solutions since the mutation does not utilize any
global information extracted from the current population.

EDAs extract global statistical information from the previous
search and then represent it as a probability model, which charac-
terizes the distribution of promising solutions in the search space.
New solutions are generated by sampling from this model. How-
ever, the location information of the locally optimal solutions
found so far has not been directly used in EDAs, there is no mech-
anism to directly control the similarity between new solutions and
a given solution. The idea behind the proposed operator which we
call guided mutation is to combine the global statistical informa-
tion and location information of the solutions found so far to over-
come the shortcoming of GAs and EDAs.

Several different probability models have been introduced in
EDAs for modeling the distribution of promising solutions. The uni-
variate marginal distribution (UMD) model is the simplest one and
has been used in univariate marginal distribution algorithm (Muh-
lenbein, 1997), population-based incremental learning (Baluja,
1994), and compact GA (Harik et al., 1999). Let the search space
be X ¼ f0;1gn, UMD model uses a probability vector p ¼ ðp1;

. . . ; pnÞ 2 ½0;1�
n to characterize the distribution of promising solu-

tions in the search space, where pi is the probability that the value
of the ith position of a promising solution is one. The guided muta-
tion operator uses a probability vector p 2 ½0;1�n to guide to mutate
an x 2 f0;1gn in the following way (see Fig. 1):

Remark 1. From the above guided mutation operator, yi is directly
copied from the parent x or randomly sampled from the probability
vector p. The larger b is, the more elements of y are sampled from
the probability vector p. In other words, b, similar to the mutation
rate in conventional mutation, controls the similarity between
offspring and the parent, while the parent can be chosen from the
best solutions found so far.
Remark 2. In the correlated mutation (Eiben & Smith, 2003) for
real vectors, the probability of generating an offspring in the
steepest ascent direction is larger than in other directions. In
the conventional mutation for binary strings, the probability of
a vector y being generated from the parent vector x is entirely
determined by the Hamming distance between x and y. The
guided mutation operator can be regarded as a discrete counter-
part of the correlated mutation. The probability vector p in the
guided mutation can be learned and updated at each generation
for modeling the distribution of promising solutions. Since some
elements of the offspring y are sampled from the probability
vector p, it can be expected that y should fall in or close to a
promising area. Meanwhile, this sampling also provides diversity
for the search afterwards.
3. Introduction of ACGA

An Artificial Chromosome Genetic Algorithm (ACGA) is able to
capture the parental distribution by sampling new solutions (arti-
ficial chromosomes) from the probabilistic models periodically and
the rest of the chromosomes are created by the genetic operators.
Sampling new individuals periodically is the different characteris-
tics from other EDAs because most EDAs generate new solutions
entirely.

The primary procedure of ACGA is to collect gene information
first and then use the gene information to generate artificial chro-
mosomes. ACGA collects the chromosomes whose fitness is better
than the average fitness of current population. Thus, the average
fitness is calculated generation by generation for gene collection.
After the gene collection, certain statistics of the gene distribution
will be calculated. Then, ACs will be generated according to these
statistics. A detailed procedure of the ACGA algorithm is depicted
in Fig. 2.

Basically, there are two parameters to be decided in this algo-
rithm, which are startingGen and interval. The first parameter start-
ingGen is to determine the starting time of generating artificial



Fig. 2. The framework of the ACGA.
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chromosomes. The main reason is that the probabilistic model
should be only applied to generate better chromosomes when
the searching process reaches a more stable state. As a result, the
probability model is applied after some generations. Later on, arti-
ficial chromosomes are not generated in each generation because it
takes more computational time since the proportional selection
takes Oðn2Þ time complexity for each solution. Consequently, inter-
val controls the time interval of artificial chromosomes generated.
A set of experiments for parameter configuration has been set up
by Design-of-Experiment (DOE). DOE will examine the significance
of each factor. According to these preliminary results, both factors
have no significant difference. Therefore, the startingGen and inter-
val are set to 500 and 50 in later experiments, respectively.

The following Section 3.1 explains the proposed algorithm in
detail. First, a step by step procedure is applied to explain how to
establish a probabilistic model. Then in Section 3.2, an instance is
applied to explain how to generate an offspring by the probabilistic
model.

3.1. Establishing a probabilistic model

Suppose a population has M strings X1;X2; . . . ;XM at current
generation t, which is denoted as Population ðtÞ. Then, Xk

ijis a binary
variable in chromosome k, which is shown in Eq. (1).

Xk
ij ¼

1 if job i is assigned to position j

0 Otherwise
; i ¼ 1; . . . ; n; j ¼ 1; . . . ; n

�

ð1Þ

The fitness of these M chromosomes is evaluated and the gene
information is collected from N best chromosomes where N 6 M.
The N chromosomes are set as M=2 in this research. The purpose
of only selecting N best chromosomes from population is to pre-
vent the quality of the probabilistic model from being down-
graded by inferior chromosomes. Let PijðtÞ be the probability of
job i to show up at position j at current generation. Our probability
model is similar to PBIL where the PijðtÞ is updated as follows:

Pijðt þ 1Þ ¼ 1
N

XN

k¼1

Xk
ij; i ¼ 1; . . . ; n; j ¼ 1; . . . ;n ð2Þ

For the probabilistic matrix of all jobs at different positions,
they are written as the Eq. (3).

Pðt þ 1Þ ¼

P11ðt þ 1Þ � � � P1nðt þ 1Þ
..
. . .

. ..
.

Pn1ðt þ 1Þ . . . Pnnðt þ 1Þ

0
BB@

1
CCA ð3Þ
3.2. Generating offsprings by the parental distribution

As soon as the probabilistic matrix P is built, jobs are assign
onto each positions by proportional selection. Through this propor-
tional selection, Zhang and Muhlenbein (2004) showed if the dis-
tribution of the new elements capture the parents well, global
optimal will be obtained, and a factorized distribution algorithm
converges globally under proportional selection. The assignment
sequence for each position is assigned in random sequence. The
assignment procedure is determined as follows:

S is a set of shuffled sequence which determines the sequence of
each position is assigned a job, X is the set of un-arranged jobs, J is
the set of arranged jobs. J is empty in the beginning, h is a random
probability is drawn from Uð0;1Þ, i is a selected job by proportional
selection and k the element index of the set S.
1: S shuffled the job number ½1 . . . n�
2: J  U
3: while k – U do
4: h Uð0;1Þ
5: Select a job i satisfies h 6 Pik=

P
i2XPði; kÞ

6: JðkÞ  i
7: X X n i
8: S S n k
9: end while
In Step 5, since the time-complexity of the proportional selec-

tion is Oðn2Þ, it spends more time than using crossover operator.
As a result, it is the reason why this paper hybridizes the probabi-
listic model with genetic operators that can avoid the excessive
computational efforts.

The focus of this research is to apply the EDAs to solve the
NP-hard single-machine scheduling problem, particularly the
minimization of the total weighted earliness and tardiness costs.
We review this scheduling problem in Section 4.

4. Single machine scheduling problems

As a generalization of single-machine scheduling to minimize
the weighted tardiness (Lenstra, Kan, & Brucker, 1975), the sin-
gle-machine scheduling problem to minimize the total weighted
earliness and tardiness costs is strongly NP-hard. The earlier works
on this problem were due to Chang (1999), Chang and Lee (1992)
and Wu et al. (1993). Belouadah, Posner, and Potts (1992) dealt
with a similar problem with the objective of minimizing the total
weighted completion time. The problem is the same as that dis-
cussed in Belouadah et al. (1992). Later on, Alves and Almeida
(2007) developed various dominance rules to solve the problem.
Valente and Alves (2005, 2007) presented branch-and-bound algo-
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rithms based on decomposition of the problem into the weighted
earliness and the weighted tardiness sub-problems. Two lower
bound procedures were used for each sub-problem. The lower
bound for the original problem was the sum of the lower bounds
for the two sub-problems. In Valente and Alves (2007), the authors
analyzed the performance of various heuristic procedures, includ-
ing dispatching rules, a greedy procedure, and a decision theory
based search heuristic.

The earliness/tardiness scheduling problem with equal release
dates and no idle time has been considered by several authors.
Both exact and heuristic approaches have been proposed to solve
the problem. Among the exact algorithm approaches, branch-
and-bound algorithms were presented by Abdul-Razaq and Potts
(1988), Li (1997), and Liaw (1999). The lower bounding procedure
of Abdul-Razaq and Potts (1988) is based on the sub-gradient opti-
mization approach and the dynamic programming state-space
relaxation technique, whereas Li (1997) and Liaw (1999) used
Lagrangian relaxation and the multiplier adjustment method.
Among these heuristics, Ow and Morton (1989) developed several
dispatching rules and a filtered beam search procedure. In Valente
and Alves (2005), the authors presented an additional dispatching
rule and a greedy procedure. They also considered the use of dom-
inance rules to further improve the schedule obtained by the heu-
ristics. A neighborhood search algorithm was presented by Li
(1997).

Chang, Chen, and Fan (2009c) developed a new algorithm,
termed as the Electromagnetism-like algorithm, to deal with the
single-machine scheduling problem with the consideration of ear-
liness/tardiness penalties. The Electromagnetism-like algorithm
was originally proposed by Birbil and Fang (2003), which is able
to solve continuous problems. But the Electromagnetism-like algo-
rithm needs to incorporate the random key method to solve dis-
crete problems such as scheduling problems. Therefore, the
Electromagnetism-like algorithm diversifies the inferior solutions,
whereas the genetic algorithm operator, i.e., the crossover opera-
tor, recombines better solutions. Experimental results show that
hybrid algorithms are far superior to using the Electromagne-
tism-like algorithm alone.

Some research has developed dominance properties (DPs) for
this category of problems (Liaw, 1999; Luo & Chu, 2006; Luo,
Chu, & Wang, 2006; Jouglet, Savourey, Carlier, & Baptiste, 2008;
Sourd & Kedad-Sidhoum, 2003, 2007). DPs are employed in
branch-and-bound algorithms to enhance the fathoming proce-
dure to be combined with other meta-heuristics, such as integrat-
Table 1
Selected results of these algorithms employ 50,000 examined solutions.

Instance SGA ACGA

Min Avg. Max Min

sks222a 5286 5357.2 5504 5286
sks255a 2372 2413.8 2508 2372
sks288a 3421 3471.2 3576 3421
sks322a 11,574 11,874.7 12,760 11,568
sks355a 6090 6430.1 6930 6056
sks388a 11,317 11,345.1 11,517 11,317
sks422a 25,769 26,177.6 26,971 25,656
sks455a 6797 7409.1 8415 6405
sks488a 16,910 17,600.0 18,431 16,862
sks522a 29,564 30,388.7 31,799 29,309
sks555a 10,338 11,903.9 13,510 10,187
sks588a 25,469 26,143.1 26,931 24,844
sks622a 44,150 45,269.9 46,818 43,048
sks655a 17,565 19,996.8 22,313 16,158
sks688a 34,886 36,366.7 38,108 33,551
sks922a 92,619 95,766.7 99,835 88,853
sks955a 36,733 41,872.8 47,525 30,606
sks988a 89,034 92,361.9 97,193 82,099
ing DPs with GA to solve the scheduling problem with earliness/
tardiness penalties (Chang, Chen, & Mani, 2009d).
5. Convergency progress analysis of EDAs

In this section, ACGA and EA/G are analyzed by running the in-
stances of single machine scheduling problems with the minimiza-
tion of earliness/tardiness cost. When we observe the convergency
progress of the two EDAs, simple Genetic Algorithm (SGA) with
elitism is also adopted into the comparisons. The stopping criteria
are based on the number of examined solutions, which are 50,000,
75,000, 100,000, and 125,000 solutions. The four examined solu-
tions stand for the different implementation environments which
allow lower, medium, high, and higher level of computational time.
When taking a close look of the convergency behavior, we attempt
to discover whether there is any difference among the three algo-
rithms when the stopping criteria are different. The analysis is
done by Design-of-Experiment to distinguish the difference of
these algorithms. And the parameter settings are the same, such
as the population size is 100, the crossover rate is 0.9, and muta-
tion rate is 0.5 across all experiments. And when we use 50,000
solutions, it means that the algorithms stop at generation 500.

There are numerous data sets published in the literature (Sourd
& Kedad-Sidhoum, 2003) for the single-machine scheduling prob-
lems, including 20, 30, 40, 50, 60, and 90 jobs. Each data set of
20 jobs up to 50 jobs contains 49 instances (problems) whereas
there are nine instances in the data set of 60 jobs and 90 jobs.
We carried out our experiments on these total 214 instances. Each
algorithm will replicate every instance 30 times. The following
subsections are the empirical results of solving the single-machine
scheduling problems.
5.1. Empirical results of different stopping criteria

In Tables 1–4, they illustrate the minimum, average, and maxi-
mum objective values for the SGA, ACGA, and EA/G, respectively. It
is clearly that ACGA and EA/G outperform the SGA. In order to test
the significance between ACGA and EA/G, Analysis of Variance (AN-
OVA) is used. When the P-Value is less than 0.05, it means there is
a significance of the factor. The detailed information of the ANOVA
analysis is in Chen and Chen (2009).

In Chen and Chen (2009), the factor Method is very significant
in the all ANOVA tables, Duncan Grouping test is used to further
EA/G

Avg. Max Min Avg. Max

5289.3 5298 5286 5290.8 5298
2382.7 2388 2372 2380.0 2388
3421.0 3421 3421 3421.0 3421

11,578.9 11,622 11,568 11,574.6 11,622
6056.9 6058 6056 6065.7 6212

11,317.0 11,317 11,317 11,318.5 11,340
25,666.6 25,704 25,656 25,661.8 25,697

6443.5 6545 6405 6435.2 6667
16,862.9 16,888 16,862 16,862.0 16,862
29,327.0 29,398 29,309 29,343.7 29,398
10,233.9 10,456 10,187 10,208.6 10,264
24,846.5 24,861 24,844 24,846.4 24,861
43,098.0 43,369 43,048 43,107.1 43,286
16,224.8 16,716 16,158 16,196.4 16,640
33,638.5 33,797 33,551 33,600.3 33,686
89,085.8 89,549 88,841 88,870.8 89,082
30,828.9 31,235 30,582 30,648.2 30,804
82,279.9 82,531 81,984 81,985.3 81,990



Table 2
Selected results of these algorithms employ 75,000 examined solutions.

Instance SGA ACGA EA/G

Min Avg. Max Min Avg. Max Min Avg. Max

sks222a 5286 5356.9 5604 5286 5289.2 5298 5286 5289.2 5298
sks255a 2372 2428.6 2712 2372 2381.1 2388 2372 2382.9 2388
sks288a 3421 3472.0 3648 3421 3421.0 3421 3421 3421.0 3421
sks322a 11,568 11,880.5 12,358 11,568 11,574.6 11,622 11,568 11,570.6 11,622
sks355a 6056 6430.3 7061 6056 6057.0 6058 6056 6072.1 6242
sks388a 11,317 11,334.4 11,534 11,317 11,317.0 11,317 11,317 11,320.1 11,340
sks422a 25,755 26,245.1 27,044 25,656 25,660.5 25,704 25,656 25,663.9 25,697
sks455a 6613 7202.4 7916 6405 6428.0 6545 6405 6428.4 6545
sks488a 17,013 17,490.0 18,128 16,862 16,865.5 16,888 16,862 16,862.9 16,888
sks522a 29,588 30,294.6 31,365 29,309 29,318.3 29,396 29,309 29,320.8 29,398
sks555a 10,625 11,933.9 13,957 10,187 10,217.6 10,368 10,187 10,210.5 10,267
sks588a 24,992 25,863.0 26,348 24,844 24,844.6 24,861 24,844 24,846.4 24,861
sks622a 43,543 44,858.5 46,690 43,048 43,089.8 43,369 43,048 43,095.7 43,286
sks655a 17,645 19,304.3 21,366 16,158 16,175.1 16,570 16,158 16,241.2 16,640
sks688a 34,872 35,966.8 37,579 33,551 33,612.8 33,665 33,551 33,590.1 33,686
sks922a 92,013 94,714.1 98,407 88,842 88,940.7 89,631 88,842 88,884.5 89,078
sks955a 34,538 40,738.2 48,650 30,582 30,710.3 31,435 30,582 30,649.4 30,769
sks988a 87,099 91,698.7 97,224 81,984 82,037.5 82,198 81,984 81,989.6 82,112

Table 3
Selected results of these algorithms employ 100,000 examined solutions.

Instance SGA ACGA EA/G

Min Avg. Max Min Avg. Max Min Avg. Max

sks222a 5286 5352.3 5603 5286 5288.9 5298 5286 5289.9 5298
sks255a 2372 2459.3 2936 2372 2380.0 2388 2372 2380.4 2388
sks288a 3421 3480.1 3684 3421 3421.0 3421 3421 3421.0 3421
sks322a 11,568 11,857.1 12,211 11,568 11,577.1 11,622 11,568 11,575.5 11,622
sks355a 6100 6335.4 7083 6056 6065.4 6193 6056 6062.1 6212
sks388a 11,317 11,323.9 11,413 11,317 11,317.0 11,317 11,317 11,320.1 11,340
sks422a 25,662 26,169.9 27,138 25,656 25,659.2 25,704 25,656 25,661.1 25,712
sks455a 6575 7298.5 9472 6405 6426.7 6666 6405 6424.6 6545
sks488a 17,126 17,528.5 18,059 16,862 16,862.9 16,888 16,862 16,862.9 16,888
sks522a 29,477 30,232.9 31,574 29,309 29,312.2 29,396 29,309 29,325.5 29,398
sks555a 10,667 11,910.3 15,024 10,187 10,215.8 10,299 10,187 10,224.1 10,299
sks588a 25,004 25,836.3 26,580 24,844 24,844.9 24,861 24,844 24,849.3 24,870
sks622a 43,401 44,786.5 45,863 43,048 43,119.9 43,479 43,048 43,103.2 43,273
sks655a 17,728 19,389.5 22,617 16,158 16,218.0 16,635 16,158 16,222.4 16,617
sks688a 34,517 35,775.6 37,418 33,551 33,638.6 33,665 33,551 33,596.6 33,686
sks922a 92,425 94,684.9 99,061 88,841 88,894.2 89,067 88,841 88,875.5 89,188
sks955a 35,558 39,495.4 43,256 30,582 30,682.8 31,312 30,590 30,643.2 30,768
sks988a 86,422 90,895.5 96,954 81,984 82,001.5 82,053 81,984 81985.2 81,989

Table 4
Selected results of these algorithms employ 125,000 examined solutions.

Instance SGA ACGA EA/G

Min Avg. Max Min Avg. Max Min Avg. Max

sks222a 5286 5352.3 5603 5286 5288.9 5298 5286 5289.9 5298
sks255a 2372 2459.3 2936 2372 2380.0 2388 2372 2380.4 2388
sks288a 3421 3480.1 3684 3421 3421.0 3421 3421 3421.0 3421
sks322a 11,568 11,857.1 12,211 11,568 11,577.1 11,622 11,568 11,575.5 11,622
sks355a 6100 6335.4 7083 6056 6065.4 6193 6056 6062.1 6212
sks388a 11,317 11,323.9 11,413 11,317 11,317.0 11,317 11,317 11,320.1 11,340
sks422a 25,662 26,169.9 27,138 25,656 25,659.2 25,704 25,656 25,661.1 25,712
sks455a 6575 7298.5 9472 6405 6426.7 6666 6405 6424.6 6545
sks488a 17,126 17,528.5 18,059 16,862 16,862.9 16,888 16,862 16,862.9 16,888
sks522a 29,477 30,232.9 31,574 29,309 29,312.2 29,396 29,309 29,325.5 29,398
sks555a 10,667 11,910.3 15,024 10,187 10,215.8 10,299 10,187 10,224.1 10,299
sks588a 25,004 25,836.3 26,580 24,844 24,844.9 24,861 24,844 24,849.3 24,870
sks622a 43,401 44,786.5 45,863 43,048 43,119.9 43,479 43,048 43,103.2 43,273
sks655a 17,728 19,389.5 22,617 16,158 16,218.0 16,635 16,158 16,222.4 16,617
sks688a 34,517 35,775.6 37,418 33,551 33,638.6 33,665 33,551 33,596.6 33,686
sks922a 92,425 94,684.9 99,061 88,841 88,894.2 89,067 88,841 88,875.5 89,188
sks955a 35,558 39,495.4 43,256 30,582 30,682.8 31,312 30,590 30,643.2 30,768
sks988a 86,422 90,895.5 96,954 81,984 82,001.5 82,053 81,984 81,985.2 81,989
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Fig. 4. Convergency analysis of the algorithms in different stopping criteria
(instance-sks952a).
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distinguish the performance of the two algorithms. In Duncan
Group test, when the algorithms share the same alphabet, it means
they are in the same group so that there is no difference between/
among these algorithms. On the other hand, as soon as they are not
in the same group (or to share the same alphabet), there is signif-
icant difference between/among them.

The Duncan grouping results show that when EA/G outperforms
the ACGA under the stopping criterion of using 50,000 and 75,000
solutions. There is no difference between EA/G and ACGA when
they both apply 100,000 solutions. Finally, ACGA outperforms the
EA/G statistically significant in the case of employing 125,000 solu-
tions. A performance transition is occurred at the stopping crite-
rion of using 100,000 solutions.

In order to show the results clearly, we demonstrate the interac-
tion plots of the algorithms together with the different examined
solutions in Fig. 3. Through the interaction plots, it shows that the
EA/G indeed outperforms the ACGA very much. However, the per-
formance of EA/G does not be improved with the number of exam-
ined solutions increased after the level of 75,000. ACGA,
nonetheless, is improved generation by generation and this algo-
rithm is superior to EA/G when we apply longer computational time.

This phenomenon can be explained by Fig. 4 which utilizes the
instance sks952a. EA/G converges faster than ACGA and SGA. After
the generation 150, EA/G is converged and the performance is not
improved. As a result, it could be a problem of premature conver-
gency belonged to EA/G. So we may increase the diversity of the
generated solutions for the EA/G or the EDAs completely sample
new individuals from probabilistic models.

To conclude the comparison results, these experiments reveal
interesting points when the three algorithms are ran under the
various stopping criteria. EA/G outperforms the ACGA statistically
significant when it stops under lower computational time whereas
ACGA performs well when we apply higher level of stopping crite-
rion. It shows EA/G might converge faster than ACGA; however,
when we concern on the solution quality and we are able to em-
ploy higher level computing time. As a result, this paper continu-
ally discusses this phenomenon and then conduct some
important guidelines in Section 6.
6. Guidelines of designing effective EDAs

There are some interesting results obtained in the Section 5. EA/
G is better than ACGA when the computational time is limited. On
the other hand, ACGA outperforms the EA/G when it comes to long-
er stopping criterion. The reason is that sampling new solutions
Fig. 3. ACGA and EA/G evaluate different examined solutions.
from probabilistic models avoids the disruption of good solution
structures represented by the model. During the early evolutionary
process, there are some salient genes that are available. Because
EA/G completely samples new solutions from probabilistic models,
it is helpful for the convergency speed in the early stage. Through
the convergency plots in the previous section, however, EA/G
seems no longer producing better solutions after 200 generations
in most instances. It means that the stagnation of EA/G after some
generations are executed.

Contrary to EA/G, the convergency speed of ACGA is not fast in
the early stage. ACGA, nevertheless, performs well in the case that
the solution quality is more important so that we implement the
algorithm with longer computational time. And the implementa-
tion time should be controlled in a reasonable time. It said that
ACGA is a hybrid algorithm of probabilistic models and SGA. This
hybrid algorithm samples new solutions from probabilistic models
once in a while and other generations use standard genetic opera-
tors during the evolutionary process. The implication of this frame-
work means that it may converge slower because the genetic
operators may break good solution structure. The benefit of genetic
operators, however, also brings better population diversity due to
the disruptions by genetic operators. The intensification and diver-
sification effect present the trade-off in the searching progress.

Through these statements, Meta-heuristics should have a tech-
nique to balance the intensification and diversification. For in-
stance, Reactive Tabu Search (Battiti & Tecchiolli, 1994; Osman &
Wassan, 2002) diversifies the solution by making a number of ran-
dom moves when the search appears to be repeating an excessive
number of solutions excessively often. With this assumption, ACGA
has better chances to explore different solution space than EA/G
under longer computational time. Due to these interesting finding,
we deduct and clearly point out some guidelines for developing an
effective searching algorithm in the following sections. In addition,
this paper proposed an Adaptive EA/G in Section 6.5 which utilizes
the first guideline to enhance the quality of the EA/G.

6.1. Increasing the population diversity gradually

The stagnation of EA/G apparently exists after some generations
are ran. It could be a common problem for other EDAs which en-
tirely sample news solutions from probabilistic models. For exam-
ple, PBIL (Baluja & Davies, 1997), UMDA (Miettinen, 1999), cGA
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(Hansen & Mladenović, 2001), BMDA (Okabe, Jin, Sendoff, & Olho-
fer, 2004), ECGA (Hansen, Mladenović, & Perez-Britos, 2001), BOA
(Ow & Morton, 1989) are all in this class. As a result, these EDAs
shall consider the population diversity when the population no
longer generates diversified or better solutions.

In terms of revising these existing EDAs, a key approach is to
control the probabilistic models after a number of generations
are ran. Some diversity preservation techniques are proposed in
Chang et al. (2009a), which stem from the concept of Ant-Colony
Optimization (Corne et al., 1999; Gambardella, Taillard, & Dorigo,
1999). They test the diversity preservation techniques in solving
the single-machine scheduling problems and flowshop scheduling
problems. Their results indicate the best objective evaporation and
Max–Min evaporation performs significantly in the single-machine
scheduling and flowshop scheduling problems, respectively. It
might be applicable for all EDAs.

Apart from the general methodology of controlling the probabi-
listic models, the other method is to modify each algorithm based
on their own characteristics. Take EA/G for example, b is the
parameter which determines a proportion of genes copied from a
selected elite solution. b is set as a static parameter in the original
version of EA/G. In order to increase the diversity, b can be de-
creased generation by generation so that the diversity of the pop-
ulation will be increased. In order to explain the ideas of these
guidelines clearly, this paper chooses this guideline to change the
b for designing an Adaptive EA/G in Section 6.5.

6.2. EDAs alternative with other meta-heuristics

Since EDAs may not generate diversify solutions well and cause
the problem of premature convergency, incorporation of meta-
heuristic, particularly the genetic algorithm, might be a good ap-
proach to raise the population diversity. There are manifold exist-
ing hybrid frameworks of combining the EDAs with genetic
algorithms, such as GA-EDA, Model-Based EA, ACGA and Self-
Guided GA. The main characteristics of these algorithm is to alter-
nate EDAs together with genetic algorithms. GA-EDA and Model-
Based EA apply the probabilistic models and genetic operators by
turns. ACGA utilizes the probabilistic models occasionally. Self-
Guided GA is different from all EDAs because this algorithm does
not sample news solutions from the probabilistic models. The
probabilistic models, instead, are treated as a fitness surrogate to
evaluate the fitness of new solutions beforehand in each genera-
tion. Thus these hybrid algorithm could yield better solution qual-
ity when they employ longer computational efforts.

It is clearly that GA-EDA, ACGA, and Model-Based EA alternate
the EDAs with GAs. If researchers want to further enhance the solu-
tion quality of these algorithms, they should note that the search-
ing strategy of intensification by using the EDAs and diversification
via GAs. Since EDAs may converge faster in the beginning and ge-
netic operators might provide better population diversity, EDAs
could be implemented frequently in the early stage while GAs
dominate the most computational efforts in the later period. As a
result, although GA-EDA and Model-Based EA applies the EDAs
and GAs by turn in the original version, we can increase the fre-
quency of the EDAs in the early stage and then decrease the usage
of EDAs in the later stage. In addition, ACGA injects artificial chro-
mosomes into the population periodically, the new version of
ACGA could inject the artificial chromosome more frequently in
the earlier stage and to enlarge the injection period while the algo-
rithm is getting converged.

Except generating a population of chromosomes by probabilis-
tic models or genetic operators in a single generation, a possible
way is to sample a proportional solutions from probabilistic mod-
els and the rest of solutions are generated by using crossover and
mutation operator. MGSPGA (Chang, Chen, & Liu, 2007) samples
20% solutions from a probability matrix and the rest of the chromo-
somes are generated by the genetic operators. Consequently, the
goal of intensification and diversification are balanced in each gen-
eration. Because it is still unknown about which approach is better
(samples new solutions entirely or partially), researchers should
examine the two strategies in the near future.

Although most previous researchers employ genetic algorithms,
the authors advocate that it is not limited to alternate EDAs with
genetic algorithms. EDAs could work with other meta-heuristics.
For example, an artificial immune system (AIS) might be able to
generate diversified solutions (Pasti & de Castro, 2009). It is be-
cause an AIS employs many properties of natural immune systems,
particularly the diversity (Hunt & Cooke, 1996). This natural sys-
tem possesses a content addressable memory and the ability to for-
get little-used information (Hofmeyr & Forrest, 2000). Thus, AIS
may provide diverse solutions that result in good solution quality
when we alternate the EDAs with AIS.

Finally, there is a benefit when we do not sample all solutions
from probabilistic models. When we solve sequential problems,
the time-complexity of sampling procedures by applying the pro-
portional selection is Oðn2Þ. It is particularly time-consuming when
we solve larger size problems. As a result, we should use more effi-
cient approach without using the proportional selection. The next
section describes the methods to solve the crux of EDAs in solving
the sequential problems by using the concept of Self-Guided GA.
6.3. Replacing the procedures of sampling new solutions

Owing to the proportional selection of EDAs is used in most
sequencing problems, it causes higher computational cost, whose
time-complexity is Oðn2Þ. It makes EDAs impractical in solving
the larger size problems. As a result, it is the main motivation of
Self-Guided GA (Chen et al., 2008b) which samples new solutions
from probabilistic models. Instead, they use the probabilistic mod-
els as a fitness surrogate which determines the evolutionary pro-
gress. In addition, because the genetic operators are employed in
the evolutionary process, Self-Guided GA is expected to produce
better diversified population. This algorithm is ideal to be com-
bined with other heuristic to further improve the solution quality.
Detailed explanations are shown in the next section.

Apart from the replacing the proportional selection procedures,
Sastry, Pelikan, and Goldberg (2004) also discuss the efficiency
enhancement of EDAs. Efficiency-enhancement techniques speed-
up the search process of Estimation of Distribution Algorithms
(EDAs). Principled approaches for designing an evaluation-relaxa-
tion, and a time continuation technique. So when we utilize these
approaches, it is helpful to tackle with hard problems.
6.4. Incorporate EDAs with other heuristics

Although Zhang, Sun, and Tsang (2007) point out the positive
effect of combining other heuristics and it may bring better solu-
tion quality, the meanings are two-fold in this paper. First of all,
there are many possibilities to adopt some heuristics with EDAs
and heuristic could enhance the convergency effect. Take the
scheduling problems for instance, dominance properties are the
mathematical derivations for the scheduling problems. Chen,
Chang, Chen, and Chen (2008a) employ this technique to work
with an estimation of distribution algorithm. As a result, the per-
formance of this hybrid algorithm is better than any previous algo-
rithms which work separately. When we solve the flowshop
scheduling problems, there is a famous heuristic which is named
NEH (Nawaz, Enscore, & Ham, 1983). This heuristic is used to gen-
erate a good initial solution and then the meta-heuristic is used to
further improve the solution quality.
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Secondly, because the heuristic method is used to generate
good solutions, the researchers should pay more attentions to the
diversity issue of EDAs. The reason is before EDAs carry out the
exploration, there is a good basis provided by heuristics. It is
apparently that the designing strategy should consider how to let
the EDAs yield better population diversity. A heuristic method,
consequently, may work well with ACGA because a heuristic meth-
od is responsible for the convergency and ACGA produces diversi-
fied population. In addition, according to the guideline one, EA/G
may apply lower b value which reduces the number of copied
genes from a selected elite individual when combining with a heu-
ristic. In general, EDAs work together with a heuristic is a good ap-
proach because we may obtain better solution quality in a shorter
time and we should avoid probabilistic models no longer generate
diversified individuals.
Fig. 5. Adaptive EA/G: MainProcedure().

Fig. 6. Adaptive EA/G, ACGA, and EA/G evaluate different examined solutions.
6.5. An example of 1st guideline: adaptive EA/G

The parameter b is an important parameter which controls the
proportional of copied genes from an elite solution. In our previous
research (Chen et al., 2008b), this parameter is statistically signif-
icant in solving the single machine and flowshop scheduling prob-
lems. The reason is if b is higher, it means EA/G converges faster in
the beginning. In addition, we discuss that the EA/G no longer im-
proves the solution quality after 100 or 200 generations in most in-
stances in guideline 1. The convergency progress apparently
reveals the stagnation of this algorithm and the main reason might
be the population diversity decreased. As a result, this paper pro-
poses an Adaptive EA/G by adjusting the parameter b generation
by generation.

We define the total number of generation is as MaxGen and g is
the current generation. In Eq. (4), it shows that the new setting of b
as b0. Thus in the very beginning, the b0 is high and the b is de-
creased gradually with the evolutionary progress. Through this
simple approach, the b0 is decreased and the number of copied elite
genes are decreased so that the population diversity is increased.

b0 ¼ b � ðMaxGen� gÞ=ðMaxGenÞ ð4Þ

Fig. 5 demonstrates the main procedures of the Adaptive EA/G.
The differences are in Steps 1, 2, and 6 which calculate the b0 first
and then let the EA/G to apply this new b0 value. In order to validate
the performance of the Adaptive EA/G, it is thus compared with
other algorithms and the experimental result is shown in the Sec-
tion 7 in solving the single-machine scheduling problems under
different stopping criteria. The following is the pseudo code of
the proposed Adaptive EA/G.
7. Experiment results of adaptive EA/G

The proposed algorithm Adaptive EA/G is compared with the
original EA/G, ACGA, and SGA. They are tested under various stop-
ping criteria. These algorithms evaluate 50,000, 75,000, 100,000,
and 125,000 solutions. Fig. 6 is the results of the three algorithms
which evaluate different solutions. Adaptive EA/G is better than
EA/G in different kinds of solution evaluations. EA/G is better than
Table 5
ANOVA results at the stopping criterion of 50,000 examined solutions.

Source DF SS

Instances 213 3.99E+12
Methods 2 745,806.7783
Instances*method 426 19,754,600.38
Error 18,618 35,156,311.19
Corrected total 19,259 3.99E+12
ACGA when they examine 50,000 and 75,000 solutions. It is a pivot
point at 100,000 solutions because EA/G are not better than ACGA
in average. While three of them use 125,000 solutions, ACGA out-
performs the Adaptive EA/G and EA/G.

The comparison method still uses the ANOVA which is men-
tioned in Section 5 and the explanations of statistics terms are
available in Montgomery (2001). The ANOVA Tables 5–8 which
show the significance of these compared algorithms due to the P-
Mean square F-value P-value

18,732,022,984 9,920,062 <.0001
372,903.3892 197.48 <.0001
46,372.30136 24.56 <.0001
1888.296,873



Table 6
ANOVA results at the stopping criterion of 75,000 examined solutions.

Source DF SS Mean square F-value P-value

Instances 213 3.98E+12 18,707,615,459 1.17E+07 <.0001
Method 2 26,126.27695 13,063.13847 8.16 0.0003
Instances*method 426 2,060,246.612 4836.259652 3.02 <.0001
Error 18,618 29,802,388.15 1600.72984
Corrected total 19,259 3.98E+12

Table 7
ANOVA results at the stopping criterion of 100,000 examined solutions.

Source DF SS Mean square F-value P-value

Instances 213 3.98E+12 18,702,943,555 1.26E+07 <.0001
Method 2 23,117.49668 11,558.74834 7.78 0.0004
Instances*method 426 1,015,995.681 2384.966388 1.61 <.0001
Error 18,618 27,664,794.92 1485.916582
Corrected total 19,259 3.98E+12

Table 8
ANOVA results at the stopping criterion of 125,000 examined solutions.

Source DF SS Mean square F-value P-value

Instances 213 3.98E+12 18,698,272,722 1.43E+07 <.0001
Method 2 15,441.49675 7720.748,373 5.9 0.0027
Instances*method 426 1004598.492 2358.212,421 1.8 <.0001
Error 18,618 24,367,388.57 1308.808,066
Corrected total 19,259 3.98E+12

Table 9
Duncan grouping at the stopping criterion of 50,000 examined solutions.

Duncan grouping Mean N Methods

A 12,826.724 6420 ACGA
B 12,814.85 6420 EA/G
C 12,812.509 6420 Adaptive EA/G

Table 11
Duncan grouping at the stopping criterion of 100,000 examined solutions.

Duncan grouping Mean N Method

A 12,813.66 6420 EA/G
A
A 12,813.276 6420 ACGA
B 12,811.168 6420 Adaptive EA/G

Table 12
Duncan grouping at the stopping criterion of 125,000 examined solutions.

Duncan grouping Mean N Method

A 12,812.898 6420 EA/G
B 12,810.827 6420 Adaptive EA/G
B
B 12,810.149 6420 ACGA

Table 10
Duncan grouping at the stopping criterion of 75,000 examined solutions.

Duncan grouping Mean N Method

A 12,814.902 6420 ACGA
B 12,813.443 6420 EA/G
C 12,812.05 6420 Adaptive EA/G

Fig. 7. Compare the convergency speed of Adaptive EA/G with other algorithms
(instance-sks952a).
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Value is less than 0.0001. Thus a Duncan grouping analysis is used
to compare the significance of among the four algorithms.

In Duncan analysis, when the algorithms share the same alpha-
bet, there is no difference between/among the algorithms (Mont-
gomery, 2001). On the other hand, if the algorithms do not share
the same alphabet, they are different to each other. Thus in Tables
9–12 present the results of the comparisons. Adaptive EA/G is con-
sistently significant across the different stopping criteria compared
to the original EA/G. In Fig. 7, Adaptive EA/G converges slightly
slower than EA/G; however, it still converges faster than ACGA
and SGA. In addition, because Adaptive EA/G maintains better pop-



Table 13
Selected results of Adaptive EA/G employ different examined solutions.

Instance 50,000 75,000 100,000 125,000

Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max

sks422a 25,656 25,662.8 25,712 25,656 25,659.7 25,697 25,656 25,665.1 25,697 25,656 25,669.4 25,793
sks455a 6405 6420.1 6545 6405 6425.4 6545 6405 6428.4 6545 6405 6415.7 6545
sks488a 16,862 16,865.5 16,888 16,862 16,862.9 16,888 16,862 16,863.7 16,888 16,862 16,863.7 16,888
sks522a 29,309 29,326.2 29,398 29,309 29,323.1 29,398 29,309 29,326.7 29,398 29,309 29,326.2 29,398
sks555a 10,187 10,213.9 10,256 10,187 10,224.2 10,299 10,187 10,219.4 10,301 10,187 10,223.3 10,351
sks588a 24,844 24,847.9 24,861 24,844 24,847.9 24,861 24,844 24,845.8 24,853 24,844 24,849.8 24,870
sks622a 43,048 43,100.5 43,371 43,048 43,078.7 43,380 43,048 43,081 43,273 43,048 43,078.6 43,244
sks655a 16,158 16,163.2 16,180 16,158 16,192.8 16,616 16,158 16,208.1 16,640 16,158 16192.8 16,640
sks688a 33,551 33,592 33,686 33,551 33,624.4 33,686 33,551 33,610 33,686 33,551 33,580.7 33,686
sks922a 88,842 88,872.1 88,994 88,841 88,878.5 89,100 88,842 88,871.6 89,005 88,841 88,858.7 88,956
sks955a 30,582 30,647 30,804 30,582 30,674.8 31,394 30,582 30,639.8 30,800 30,582 30,628.4 30,740
sks988a 81,984 81,986.4 81,991 81,984 81,985.3 81,989 81,984 81,985.2 81,989 81,984 81,985.3 81,989
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ulation diversity, it finally outperforms the EA/G in the end of the
generations.

When it comes to the comparison between Adaptive EA/G and
ACGA, Adaptive EA/G is better than ACGA through 50,000 to
100,000 except in the stopping criterion of using 125,000 solutions.
The reason of Adaptive EA/G does not outperform the ACGA is be-
cause the ACGA keeps better population diversity so that this algo-
rithm has better chance to find out better solution in the longer
computational time. As a result, when we allow to spend more
computational time, we can increase the diversity of the Adaptive
EA/G being higher. So the proposed algorithm Adaptive EA/G is ro-
bust when the algorithm is used in different circumstances.

Finally, Table 13 lists the basic statistic results of Adaptive EA/G
under different solution evaluations from some selected instances.
The complete experimental results and the technical report (Chen
& Chen, 2009) are available on our website.1
8. Conclusions

This paper examines the convergency behavior of some EDAs
and deduces some guidelines for the EDAs. The convergency anal-
ysis reveals the facts of intensification and diversification effect of
EDAs. We compare EA/G with ACGA and SGA. EA/G completely
samples new individuals from probabilistic models while the ACGA
generates new solution by using the probabilistic models periodi-
cally. In the fact that the EDAs may not disrupt the good solution
structure, the convergency speed is faster than that of using genet-
ic operators. That is why EA/G converges faster than ACGA. How-
ever, due to the premature convergency of probabilistic models,
EA/G no longer generates diversified solutions so that it is not able
to get better solution quality. On the other hand, ACGA converges
slower than EA/G but when we extend the computational time, the
performance is improved. Thus it reveals interesting points of the
convergency analysis.

The guidelines include: (1) increasing population diversity
gradually, (2) hybridization of EDAs with other meta-heuristics,
(3) replacing the procedures of sampling new solutions, and (4)
incorporate EDAs with other heuristics. The first guideline is very
important for all EDAs because they may encounter this problem
of premature convergency. There are some solving approaches
are given. In addition, to make the statement more clearly, we thus
proposed an Adaptive EA/G which further improves the solution
quality statistically significant. In guideline 2, the reason of incor-
porating EDAs with other meta-heuristics is to take the advantage
of meta-heuristic which is able to provide better diversity. Then,
because the sampling procedure is time-consuming and it makes
1 http://mail.nhu.edu.tw/shihhsin/publications/sourceCodes/convergencyAnalysis/.
EDAs non-practical in solving larger size problems, the paper sug-
gests some guidelines to speedup the computational efficiency. Fi-
nally, although EDAs have been widely incorporated with other
heuristics because it is very effective of this combination, we advo-
cate we should pay more attentions to the solution diversity. The
reason is that heuristic methods are capable of providing better
intensification effects. As a result, the EDAs should increase the
diversity of the solutions, such as using the guideline 1 which in-
creases the diversity gradually or the guideline 2 to incorporate
the meta-heuristics.

The proposed algorithm Adaptive EA/G is tested by single-ma-
chine scheduling scheduling problems. The experimental results
indicate the Adaptive EA/G is statistically significant. As a result,
it is as a good example of designing an effective algorithm by using
these guidelines. For the future research, researchers may test the
guidelines to solve various problems and then to validate these
guidelines.
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Hansen, P., Mladenović, N., & Perez-Britos, D. (2001). Variable neighborhood
decomposition search. Journal of Heuristics, 7(4), 335–350.

Harik, G., Lobo, F., & Goldberg, D. (1999). The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation, 3(4), 287–297.

Hofmeyr, S., & Forrest, S. (2000). Architecture for an artificial immune system.
Evolutionary Computation, 8(4), 443–473.

Hunt, J., & Cooke, D. (1996). Learning using an artificial immune system. Journal of
Network and Computer Applications, 19(2), 189–212.

Jouglet, A., Savourey, D., Carlier, J., & Baptiste, P. (2008). Dominance-based heuristics
for one-machine total cost scheduling problems. European Journal of Operational
Research, 184(3), 879–899.

Larrañaga, P., & Lozano, J. A. (2002). Estimation of Distribution Algorithms: A new tool
for evolutionary computation. Kluwer Academic Publishers.

Lenstra, J., Kan, A., & Brucker, P. (1975). Complexity of machine scheduling
problems. In Proc. workshop studies in integer programming, Bonn.

Li, G. (1997). Single machine earliness and tardiness scheduling. European Journal of
Operational Research, 96(3), 546–558.

Liaw, C. F. (1999). A branch-and-bound algorithm for the single machine earliness
and tardiness scheduling problem. Computers and Operations Research, 26(7),
679–693.

Lin, S., & Kernighan, B. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2), 498–516.

Lozano, J. A. (2006). Towards a new evolutionary computation: Advances in the
Estimation of Distribution Algorithms. Springer.
Luo, X., & Chu, F. (2006). A branch and bound algorithm of the single machine
schedule with sequence dependent setup times for minimizing total tardiness.
Applied Mathematics and Computation, 183(1), 575–588.

Luo, X., Chu, C., & Wang, C. (2006). Some dominance properties for single-machine
tardiness problems with sequence-dependent setup. International Journal of
Production Research, 44(17), 3367–3378.

Miettinen, K. (1999). Nonlinear multiobjective optimization. Springer.
Montgomery, D. C. (2001). Design and analysis of experiments.
Muhlenbein, H. (1997). The equation for response to selection and its use for

prediction. Evolutionary Computation, 5(3), 303–346.
Muhlenbein, H., & Paaß, G. (1996). From recombination of genes to the estimation

of distributions I. Binary parameters. Lecture Notes in Computer Science, 1141,
178–187.

Nawaz, M., Enscore, E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. OMEGA, 11(1), 91–95.

Okabe, T., Jin, Y., Sendoff, B., & Olhofer, M. (2004). Voronoi-based Estimation of
Distribution Algorithm for multi-objective optimization. In Congress on
evolutionary computation CEC2004 (Vol. 2).

Osman, I., & Wassan, N. (2002). A reactive tabu search meta-heuristic for the vehicle
routing problem with back-hauls. Journal of Scheduling, 5(4), 263–285.

Ow, P. S., & Morton, T. E. (1989). The single machine early/tardy problem.
Management Science, 35(2), 177–191.

Pasti, R., & de Castro, L. (2009). Bio-inspired and gradient-based algorithms to train
MLPs: The influence of diversity. Information Sciences.

Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). A survey of optimization by
building and using probabilistic models. Computational Optimization and
Applications, 21(1), 5–20.

Peña, J., Robles, V., Larrañaga, P., Herves, V., Rosales, F., & Perez, M. (2004). GA-EDA:
Hybrid evolutionary algorithm using genetic and Estimation of Distribution
Algorithms. In Innovations in applied artificial intelligence: 17th international
conference on industrial and engineering applications of artificial intelligence and
expert systems. Proceedings of IEA/AIE 2004, Ottawa, Canada, May 17–20.

Santana, R., Larrañaga, P., & Lozano, J. (2008). Combining variable neighborhood
search and Estimation of Distribution Algorithms in the protein side chain
placement problem. Journal of Heuristics, 14, 519–547.

Sastry, K., Pelikan, M., & Goldberg, D. E. (2004). Efficiency enhancement of genetic
algorithms via building-block-wise fitness estimation. In Congress on
evolutionary computation, CEC2004 (Vol. 1).

Sourd, F., & Kedad-Sidhoum, S. (2003). The one-machine problem with earliness and
tardiness penalties. Journal of Scheduling, 6(6), 533–549.

Sourd, F., & Kedad-Sidhoum, S. (2007). A faster branch-and-bound algorithm for the
earliness-tardiness scheduling problem. Journal of Scheduling, 1–10.

Syswerda, G. (1993). Simulated crossover in genetic algorithms. Foundations of
Genetic Algorithms, 2, 239–255.

Valente, J. M. S., & Alves, R. A. F. S. (2005). Improved heuristics for the early/tardy
scheduling problem with no idle time. Computers and Operations Research, 32(3),
557–569.

Valente, J. M. S., & Alves, R. A. F. S. (2007). Heuristics for the early/tardy scheduling
problem with release dates. International Journal of Production Economics,
106(1), 261–274.

Wu, S. D., Storer, R. H., & Chang, P. C. (1993). One-machine rescheduling heuristics
with efficiency and stability as criteria. Computers and Operations Research,
20(1), 1–14.

Zhang, Q., & Muhlenbein, H. (2004). On the convergence of a class of Estimation of
Distribution Algorithms. IEEE Transactions on Evolutionary Computation, 8(2),
127–136.

Zhang, Q., Sun, J., & Tsang, E. (2005). An evolutionary algorithm with guided
mutation for the maximum clique problem. IEEE Transactions on Evolutionary
Computation, 9(2), 192–200.

Zhang, Q., Sun, J., & Tsang, E. (2007). Combinations of Estimation of Distribution
Algorithms and other techniques. International Journal of Automation and
Computing, 4(3), 273–280.

Zhang, J., & Szeto, K. Y. (2005). Mutation matrix in evolutionary computation: An
application to resource allocation problem. Lecture Notes in Computer Science,
3612, 112–119.

Zhou, A., Zhang, Q., Jin, Y., Tsang, E., & Okabe, T. (2005). A model-based evolutionary
algorithm for bi-objective optimization. In: Proceedings of the 2005 Congress on
Evolutionary Computation CEC-2005 (pp. 2568–2575). Edinburgh: IEEE Press.


	Guidelines for developing effective Estimation of Distribution Algorithms in solving single machine scheduling problems
	Introduction
	Review of EA/G
	Introduction of ACGA
	Establishing a probabilistic model
	Generating offsprings by the parental distribution

	Single machine scheduling problems
	Convergency progress analysis of EDAs
	Empirical results of different stopping criteria

	Guidelines of designing effective EDAs
	Increasing the population diversity gradually
	EDAs alternative with other meta-heuristics
	Replacing the procedures of sampling new solutions
	Incorporate EDAs with other heuristics
	An example of 1st guideline: adaptive EA/G

	Experiment results of adaptive EA/G
	Conclusions
	Acknowledgement
	References


