
I
s

P
a

b

a

A
R
R
A
A

K
S
S
D
G
U

1

n
a
t
p
n
o
t
A
c
t
(
e
[
[

i
l
p
t
a

1
d

Applied Soft Computing 11 (2011) 1263–1274

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

ntegrating dominance properties with genetic algorithms for parallel machine
cheduling problems with setup times

ei-Chann Changa,∗, Shih-Hsin Chenb

Department of Information Management, Yuan-Ze University, 135 Yuan Tung Road, Chung-Li 32026, Taiwan, ROC
Department of Electronic Commerce Management, Nanhua University, 32, Chungkeng, Dalin Chiayi 62248, Taiwan, ROC

r t i c l e i n f o

rticle history:
eceived 8 September 2007
eceived in revised form 18 February 2010
ccepted 14 March 2010
vailable online 19 March 2010

a b s t r a c t

This paper deals with an unrelated parallel machine scheduling problem with the objective of minimizing
the makespan. There are machine-dependent and job sequence-dependent setup times and all jobs are
available at time zero. This is a NP-hard problem and a set of dominance properties are developed includ-
ing inter-machine (i.e., adjacent and non-adjacent interchange) and intra-machine switching properties
eywords:
cheduling
etup times
ominance properties
enetic algorithm

as necessary conditions of job sequencing orders in an optimal schedule. As a result, by applying these
dominance properties for a given sequence, a near-optimal solution can be derived. In addition, a new
meta-heuristic is introduced by integrating the dominance properties with genetic algorithm to further
improve the solution quality for larger problems. The performance of this meta-heuristic is evaluated by
using benchmark problems from the literature. The intensive experimental results show that GADP can
find all optimal solutions for the small problems and outperformed the solutions obtained by the existing

lems.
nrelated parallel machine heuristics for larger prob

. Introduction

In most scheduling problems, the setup times are either
eglected or assumed to be part of the processing times. This
ssumption is acceptable when the ratio of the setup time to
he processing time is small. However, in the make-to-order
roduction environment the role of the setup time cannot be
eglected because of the frequent changeovers and large amount
f setups. Negligence of setup time leads to unrealistic results,
hat is, the resulting schedules are not informative any more.
pplications for parallel machine scheduling with setup are
ommon in many industries including painting, plastic, tex-
ile, glass, semiconductor, chemical, and paper manufacturing
e.g., Guinet and Dussauchy [20]; Chang et al. [5,11] Franca
t al. [15]; Radhakrishnan and Ventura [36]; Kurz and Askin
25]; Pinedo [34]; Randhawa and Kuo [29]; Zhang and Wu
40]).

The unrelated parallel machines scheduling problem (PMSP)
s the scheduling of n jobs available at time zero on m unre-

ated machines (Rm) to minimize the makespan, Cmax. If the jobs’
rocessing times are dependent on the machine assigned and
here is no relationship among these machines, then the machines
re considered unrelated. In addition, machine-dependent and

∗ Corresponding author. Tel.: +886 936101320; fax: +886 34638884.
E-mail address: iepchang@saturn.yzu.edu.tw (P.-C. Chang).

568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2010.03.003
© 2010 Elsevier B.V. All rights reserved.

sequence-dependent setup times, i.e., Sijk, for job i sequenced before
j on machine k, are considered. The setup times are sequence-
dependent as their amounts depend on job sequence. They are also
machine-dependent because each machine has its own matrix of
setup times and each machine is not exactly identical to each other.
The problem will be referred to as Rm/Sijk/Cmax. The basic identical
PMSP Pm||Cmax is NP-hard even when m = 2 according to Garey and
Johnson [16]. Since Rm/Sijk/Cmax is a generalization of the former
problem, and then it is also NP-hard.

Recently, meta-heuristics are proposed to solve different kind of
machine scheduling problems as in Chang et al. [6–10], Chou et al.
[12], Hsieh et al. [21] and Connolly [13]. However, it is observed
that the convergence of genetic algorithm is slow. One way of
improving the convergence in genetic algorithms is to include
the knowledge from problem domain. In this research, dominance
properties are included in Meta-heuristics to further improve the
convergence. Dominance properties of the optimal schedule are
developed based on the switching of two adjacent jobs i and j. These
dominance properties are in the mathematic form which provides
necessary conditions for any given schedule to be optimal. For a
given schedule, by applying these DP in advance, we can derive
the best sequence between any two jobs i and j. In addition, the

operation of DP is very efficient.

The dominance properties obtain efficient solutions before the
meta-heuristics are carried out. Once the DP generates good initial
solutions efficiently, the meta-heuristics are able to converge faster.
It is true that DP needs additional computational efforts, but helps

dx.doi.org/10.1016/j.asoc.2010.03.003
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:iepchang@saturn.yzu.edu.tw
dx.doi.org/10.1016/j.asoc.2010.03.003

1 Soft C

G
o

2

i
A
i
w
p
w
s

i
B
t
r
i
B
r
t
s
t
D
f
p
n

a
t
m
d
a
s
g
r
[
t
f
G
t
T
o
r
i
b
s
n
b
t
d

l
a
fl
p
t
p
i
c
f
a
h
w
l

264 P.-C. Chang, S.-H. Chen / Applied

A to converge faster so that meta-heuristics requires less number
f generations.

. Literature review

State-of-art reviews on parallel machines’ research can be found
n Graves [19], and more recently in Mokotoff [32]. In addition,
llahverdi et al. [1] presented a survey on scheduling problems

nvolving setup time’s constraints. While the focus of our review
ill be limited to unrelated PMSP, it is important to note that many
apers addressed identical parallel machine scheduling with and
ithout setup consideration referring to recent researches by Dun-

tall and Wirth [14], Kurz and Askin [25], and Lin and Li [28].
Allahverdi et al. [1] has provided a good review about schedul-

ng with setup time. Picard and Queyranne [33], Asano and Ohta [3],
rucker et al. [4], have developed branch and bound algorithms for
his type of problems. Liu and Chang [29] proposed a Lagrangian
elaxation-based approach. Martello et al. [39] proposed a mixed
nteger programming model and heuristic algorithms. Kim and
obrowski [24] combined neural networks with some dispatching
ules. Tan et al. [39] applied four different methods in solving the
otal tardiness minimization problem of the single machine with
equence-dependent setup times. Missbauer [31] investigated the
opic about order release and sequence-dependent setup times.
ue to the complexity of the problem, finding optimal solutions

or large problems is very time consuming and sometimes com-
utationally infeasible. Developing heuristic algorithms to derive
ear-optimal solutions becomes much more practical and useful.

Some authors have considered the use of meta-heuristic
pproaches for unrelated PMSP. Kim et al. [22,23] developed heuris-
ics for the problem including a Simulated Annealing (SA) to

inimize the total tardiness with machine-independent sequence-
ependent setup times. Glass et al. [18] compared genetic
lgorithms (GA), SA, and Tabu Search (TS) for Rm||Cmax without
etup times. The authors concluded that the quality of solutions
enerated by GA was poor. However, a hybrid method that incorpo-
ated GA was comparable to performances by SA and TS. Srivastava
38] presented effective TS for the same problem without setup
imes and reported that TS can provide good quality solutions
or practical size problems within a reasonable amount of time.
hirardi and Potts [17] also addressed Rm||Cmax where the heuris-

ic they used was an application of the Recovering Beam Search.
he authors reported that their algorithm produced good results
n large instances (up to 50 machines and 1000 jobs). Some
esearchers developed exact algorithms for unrelated PMSP includ-
ng Liaw et al. [27] and Lancia [26] who developed branch and
ound algorithms to find optimal solutions for the problem without
etup times. The objective functions are the total weighted tardi-
ess and Cmax, respectively. Martello et al. [30] developed lower
ounds for Rm||Cmax based on Lagrangian relaxation, which showed
o be better than previous bounds. They utilized their results to
evelop effective approximate algorithms.

The motivation for this paper comes from the scheduling prob-
em in a real-world factory. There are many types of products
nd the production of various types of products on the shop
oor requires different setup times in the changeovers. In the
ast, researchers have spent much effort in solving the setup
ime scheduling problems. This research will develop dominance
roperties including inter-machine (i.e., adjacent and non-adjacent

nterchange) and intra-machine switching properties as necessary
onditions of job sequencing orders in an optimal schedule. There-

ore, by applying these dominance properties for a given sequence,
near-optimal solution can be derived. In addition, a new meta-
euristic is introduced by integrating the dominance properties
ith genetic algorithm to further improve the solution quality for

arger problems.
omputing 11 (2011) 1263–1274

3. Problem definition

A mixed integer program (MIP) is formulated to find optimal
solutions for the unrelated parallel machine scheduling problems
with sequence-dependent times. Similar formulation was used by
Guinet and Dussauchy [20].

Minimize Cmax (1)

subject to

n∑
i=0

i /= j

m∑
k=1

xi,j,k = 1 ∀j = 1, ..., n (2)

n∑
i = 0
j /= h

xi,h,k −
n∑

i = 0
j /= h

xh,j,k = 0 ∀h = 1, ..., n (3)

∀k = 1, ..., m

Cj ≥ Ci +
m∑

k=1

xi,j,k(Si,j,k + pj,k) + M

(
m∑

k=1

xi,j,k − 1

)
(4)

∀i = 0, ..., n ∀j = 1, ..., n

n∑
j=0

x0,j,k = 1 ∀k = 1, ..., m (5)

xi,j,k ∈
{

0, 1
} ∀i = 0, ..., n, ∀j = 0, ..., n, ∀k = 1, ..., m (6)

C0 = 0 (7)

Cj ≥ 0 ∀j = 1, ..., n (8)

where, Cj: Completion time of job j, pjk: processing time of job j
on machine k, Sijk: sequence-dependent setup time to process job
j after job i on machine k, S0jk: setup time to process job j first on
machine k, xijk: 1 if job j is processed directly after job I on machine
k and 0 otherwise, x0jk: 1 if job j is the first job to be processed
on machine k and 0 otherwise, Sj0k: 1 if job j is the last job to
be processed on machine k and 0 otherwise, M: a large positive
number.

The objective (1) is to minimize the makespan. Constraints (2)
ensure that each job is scheduled only once and processed by one
machine. Constraints (3) make sure that each job must neither be
preceded nor succeeded by more than one job. Constraints (4) are
used to calculate completion times and to ensure that no job can
precede and succeed the same job. Constraints (5) ensure that no
more than one job can be scheduled first at each machine. Note
that there is no need for another set of constraints to guarantee
that only one is scheduled last on each machine because this is
guaranteed by constrains (5) in conjunction with (3). Constraints
(6) specify that the decision variable x is binary over all domains.
Constraints (7) state that the completion time for the dummy job
0 is zero and constraints (8) ensure that completion times are non-
negative. Optimal solutions for the problem then can be obtained
by solving the MIP software solver.

4. Derivations of dominance properties
We consider the problem of scheduling n jobs into unrelated
parallel machines and to derive the dominance properties (neces-
sary conditions) of the optimal schedule. In this section, we use
the objective function (Z(�)) for the makespan of schedule �.

P.-C. Chang, S.-H. Chen / Applied Soft C

Fig. 1. A parallel machine schedule.

I
c
f
a
a
o
a
t
A
t
j
s

t
m
d
s

4

i
n
a

L
s

(

P
a

Fig. 2. The interchange on the same machine (k1).

n order to derive the dominance properties for schedule �, we
onsider interchanging two jobs on the same machine or on dif-
erent machines to prove some intermediate results. Fig. 1 shows
schematic diagram of a parallel machine schedule. [j]: The job is
t position [j], P[j][k]: the processing time of the job at position [j]
n machine [k], S[i][j][k]: the setup time of the job at position [j] is
fter the job [i] on machine [k], AP[i][j][k]: the adjusted processing
ime of the job at position [j] is after the job [i] on machine [k]. Thus,
P[i][j][k] is actually equal to P[j][k] plusS[i][j][k]. Ck1

: the completion
ime on k1, G1[k]: the job set before job [i] on machine k, G2[k]: the
ob set between job [i] and job [j + 1] on machine k, G2[k]: the job
et after job [i] on machine k.

There are two conditions in exchanging jobs and they include
he intra-machine (two jobs are on the same machine) and inter-

achine (The exchanging jobs come from different machines). The
ominance properties of inter-machine and intra-machine are pre-
ented at Sections 4.1 and 4.2, respectively.

.1. Inter-machine interchange

There are two cases to be considered within the inter-machine
nterchange, and they are the adjacent exchange (see Fig. 2) and
on-adjacent exchange (see Fig. 3). The following lemma is for the
djacent exchange.

emma 1a. When the following condition exists, the exchanged
chedule is better than the original one:

AP[i−1][j][k] − AP[i−1][i][k]) + (AP[j][i][k] − AP[i][j][k])
+ (AP[i][j+1][k] − AP[j][j+1][k]) < 0

roof. Suppose we exchange job i and job j in schedule �x which
re adjacent to each other on the same machine. After exchanging

Fig. 3. Exchanging job i and job j on the same machine.
omputing 11 (2011) 1263–1274 1265

these two neighborhood jobs, schedule �x is changed to �y. From
Fig. 2, the jobs in the set G1[k] and G′

1[k] remain the same, whose
objective does not change. Thus, the completion time of G1[k] and
G′

1[k] is shown as follows:

G1[k] =
i−1∑
a=1

AP[a−1][a][k] = G′
1[k] �

Except for the G1[k] and G′
1[k] are not changed, the completion

time of the job sets G′
2[k], G′

3[k], G′
2[k], and G′

3[k] are listed in the
following.

G2[k] = G1[k] + AP[i−1][i][k] + AP[i][j][k] + AP[j][j+1][k]

G3[k] = G2[k] +
n∑

a=j+2

AP[a−1][a][k]

G′
2[k] = G1[k] + AP[i−1][j][k] + AP[j][i][k] + AP[i][j+1][k]

G′
3[k] = G′

2[k] +
n∑

a=j+2

AP[a-1][a][k]

When it comes to calculate the difference before and after we
exchange the job i and job j, we subtract �y with �x, whose differ-
ence � is actually equal to G′

2[k] − G′
3[k].

∴ � =
∏

y
−
∏

x
= G′

2[k]
− G2[k]

= (AP[i−1][j][k] − AP[i−1][i][k]) + (AP[j][i][k] − AP[i][j][k]) + (AP[i][j+1][k] − AP[j][j+1][k])

As a result, if the difference � is less than zero, the job i and job
j should be exchanged.

In term of non-adjacent interchange, the procedure is similar.
The dominance property of the non-adjacent interchange and the
derivation are shown below.

Lemma 1b. When the following condition exists, the job i and job j
are exchanged.

(AP[i−1][j][k] − AP[i−1][i][k]) + (AP[j][i+1][k] − AP[i][i+1][k])

+ (AP[j−1][i][k] − AP[j−1][j][k]) + (AP[i][j+1][k] − AP[j][j+1][k]) < 0

Proof. The objective of G1[k] and G′
1[k], is the same, so it will be

eliminated after we subtract �y with �x. The equation of G1[k] and
G′

1[k] is shown as follows:

G1[k] =
i−1∑
a=1

AP[a−1][a][k] = G′
1[k] �

Similarly with the Lemma 1a, the completion time of the job
sets G2[k], G3[k], G′

2[k], and G′
3[k] are changed. Thus, they are demon-

strated as follows.

G2[k] = G1[k] + AP[i−1][i][k] + AP[i][i+1][k] + AP[j−1][j][k] + AP[j][j+1][k]

n∑

G3[k] = G2[k] +

a=j+2

AP[a-1][a][k]

G′
2[k] = G1[k] + AP[i−1][j][k] + AP[j][i+1][k] + AP[j−1][i][k] + AP[i][j+1][k]

1266 P.-C. Chang, S.-H. Chen / Applied Soft C

G

G

1][i][k

e

4

t
a
k
e
a
t

L
a

M , G3[

P
M
s
I
t
b

4

s

G

G

G

G

G

Fig. 4. Exchanging job i and job j on the different machines.

′
3[k] = G′

2[k] +
n∑

a=j+2

AP[a-1][a][k]

When we subtract �y with �x, the difference � is actually the
′
2[k] – G2[k]. The equation of � is:

� =∏y −∏x = G′
2[k] − G2[k]

= (AP[i−1][j][k] − AP[i−1][i][k]) + (AP[j][i+1][k] − AP[i][i+1][k]) + (AP[j−

Consequently, the job i and job j is exchanged only if the differ-
nce � is less than zero.

.2. Intra-machine exchanging

This section discusses the interchange of job i and job j on any
wo different machines (see Fig. 4). Because the number of par-
llel machine is equal to or more than 2, the notation of k1 and
2 indicates the machine number for job i and job j. Job i and job j
xchanged from �x and �y (i.e., a new schedule) is obtained there-
fter. Lemma 2 presents the dominance property which satisfies
his exchanging condition.

emma 2. When the following condition exists, the job i and job j
re exchanged.

ax
{

(G3[k1]+(AP[i−1][j][k1]−AP[i−1][i][k1])+(AP[j][i+1][k1]−AP[i][i+1][k1])

roof. We compare the makespan Cmax, which is
ax(G3[k1], G3[k2]), of original schedule with C′

max of the exchanged
chedule. If C′

max is less than Cmax, job i and job j are exchanged.
n order to verify the relationship of the objective belonged to the
wo machines. The objective difference of machine k1 is calculated
efore machine k2. �

.2.1. The objective difference of machine k1
The detailed completion time of each job sets on machine k1 is

hown as follows:

1[k1] =
i−1∑
a=1

AP[a−1][a][k1] = G′
1[k1]

2[k1] = G1[k1] + AP[i−1][i][k1] + AP[i][i+1][k1]

3[k1] = G2[k1] +
n∑

a=j+2

AP[a-1][a][k1]

′ = G′ + AP + AP
2[k1] 1[k1] [i−1][j][k1] [j][i+1][k1]

′
3[k1] = G′

2[k1] +
n∑

a=j+2

AP[a-1][a][k1]
omputing 11 (2011) 1263–1274

] − AP[j−1][j][k]) + (AP[i][j+1][k] − AP[j][j+1][k])

k2]+(AP[j−1][i][k2]−AP[j−1][j][k2])+(AP[i][j+1][k2]−AP[j][j+1][k2])
}

< Cmax

After the above information is obtained, we are able to calculate
the objective difference of machine k1 by subtracting �′

x to �x.

�k1
=
∏′

x
−
∏

x
= (
∏

x
AP[i−1][j][k1] − AP[i−1][i][k1])

+ (AP[j][i+1][k1] − AP[i][i+1][k1])

4.2.2. The objective difference of machine k2
The detailed completion time of each job sets on machine k2 is

shown as follows:

G1[k2] =
j−1∑
a=1

AP[a−1][a][k2] = G′
1[k2]

G2[k2] = G1[k2] + AP[j−1][j][k2] + AP[j][j+1][k2]

G3[k2] = G2[k2] +
n∑

a=j+2

AP[a-1][a][k2]

G′
2[k2] = G′

1[k2] + AP[j−1][i][k2] + AP[i][j+1][k2]

G′
3[k2] = G′

2[k2] +
n∑

a=j+2

AP[a-1][a][k2]

After the above information is obtained, we are able to calculate
the objective difference of machine k2 by subtracting �′

y to �y.

�k2
=
∏′

y
−
∏

y
= (AP[j−1][i][k2] − AP[j−1][j][k2])

+ (AP[i][j+1][k2] − AP[j][j+1][k2])

Finally, C′
max of the exchanged schedule is Max(G3[k1] +

�k1
, G3[k2] + �k2

). Therefore, if C′
max is less than Cmax, the job i

and job j are exchanged.

4.3. A case study for dominance properties application

Take a 6 job 2 machine scheduling problem for example.
Tables 1 and 2 are the adjusted processing times for machine 1 and
machine 2, respectively. AP25 in Table 1 represents the adjusted
processing times for job 5 sequenced after job2 in machine 1 with
a value of 170. AP25 in Table 2 represents the adjusted process-
ing times for job 5 sequenced after job2 in machine 2 with a value
of 165. Different jobs sequenced differently may cause different
processing times after taking the setup times into consideration.

An initial sequence of the case example:

Step one: Min{116, 142, 130, 109, 157, 152,163, 135, 149, 136, 127,
131,}= 109

The first job to be assigned in machine 1 is job 4.
Step two: Min{163, 135, 149, 136, 127, 131}= 127

The first job to be assigned in machine 2 is job 5.

Step three: Again, second job on machine 1 will be job 1.

Second job on machine 2 will be job 6.
Step four: The third job on machine one is job 3 and the third job
on machine 2 is job 2.

P.-C. Chang, S.-H. Chen / Applied Soft C

Table 1
The adjusted processing times in machine 1.

AP1 1 2 3 4 5 6

0 116 142 130 109 157 152
1 – 167 166 122 179 141
2 127 – 120 145 170 180
3 143 165 – 150 143 145
4 124 165 157 – 173 137
5 118 162 158 108 – 137
6 132 170 136 151 181 –

Table 2
The adjusted processing times in machine 2.

AP2 1 2 3 4 5 6

0 163 135 149 136 127 131
1 – 135 171 126 139 156
2 144 – 128 158 165 110
3 15 154 – 145 127 136

t
s
i
b

(

4 147 152 159 – 170 140
5 144 142 168 171 – 127
6 166 157 172 172 173 –

At this moment, job sequence on machine 1 is [4, 1, 3] and
he finish time for machine 1 is Cm1 = 109 + 124 + 166 = 399. Job
equence on machine 2 is [5, 6, 2] and the finish time for machine 2
s Cm2 = 127 + 127 + 157 = 411. Then, the total completion time will
e Cmax = 411 as shown in Fig. 5:

Inter-machine exchange: The exchanging on the same machine:

1) The job i and job j are adjacent jobs
(i) Machine 1:

Step 1:
�X: [4, 1, 3] and �Y: [1, 4, 3]

� = (59 − 52) + (122 − 124) + (157 − 166) = −4 < 0
Because �Y is better than �X, the job 1 is changed

with job 4. The new sequence is [1, 4, 3].
The completion time on machine one is

Cm1 = 116 + 122 + 157 = 395.
Cmax = 411
Step 2:

�X: [1, 4, 3] and �Y: [1,3, 4]
� = (166 − 122) + (150 − 157) = 37 > 0

Because �Y is not better than �X, the job 4 and job 3
are not exchanged.

(ii) Machine 2:
Step 1 :
�X: [5, 6, 2] and �Y: [6, 5, 2]
� = (131 − 127) + (173 − 127) + (142 − 157) = 35 > 0

Because �Y is not better than �X, the job 5 and job 6
are not exchanged.

Fig. 5. The job sequence in each machine as an initial sequence.
omputing 11 (2011) 1263–1274 1267

Step 2
�X: [5, 6, 2] and �Y: [5,2, 6]

� = (142 − 127) + (110 − 157) = −32 < 0
Because �Y is better than �X, the job 6 is changed

with job 2. The new sequence is [5, 2, 6]
The completion time of Machine 2 is

127 + 142 + 110 = 379
Cmax = 395

(2) The job i and job j are adjacent jobs

Machine 1:
�X: [1, 4, 3] and �Y: [3, 4, 1]

� = (130 − 116) + (150 − 122) + (124 − 157) = 9 > 0

Because �Y is not better than �X, the schedule is not exchanged.
Machine 2:

�X: [5, 2, 6] and �Y: [6, 2, 5]

� = (131 − 127) + (157 − 142) + (165 − 110) = 74 > 0

Because �Y is not better than �X, the schedule is not exchanged.

Intra-machine exchange: The job i and job j are not adjacent jobs

Machine 1: [1, 4, 3], Cm1 = 395
Machine 2: [5, 2, 6], Cm2 = 379

Cmax = 395

Step 1:
�X: Machine 1: [1, 4, 3] and Machine 2: [5, 2, 6]
�Y: Machine 1: [5, 4, 3] and Machine 2: [1,2, 6]

�m1 = (157 − 116) + (108 − 122) = 27

�m2 = (163 − 127) + (135 − 142) = 19

C ′
max = max(395 + 27, 379 + 19) = 422

422 > 395

Because �Y is not better than �Y, we do not exchange the sched-
ule.
Step 2:

�X : Machine 1: [1, 4, 3] and Machine 2: [5, 2, 6]
�Y : Machine 1: [2, 4, 3] and Machine 2: [5, 1, 6]

�m1 = (142 − 116) + (145 − 122) = 49

�m2 = (144 − 142) + (156 − 110) = 48

C ′
max = max(395 + 49, 379 + 48) = 444

444 > 395
Because �Y is not better than �X, we do not exchange the sched-
ule.
Step 3:

�X: Machine 1: [1, 4, 3] and Machine 2: [5, 2, 6]

1 Soft Computing 11 (2011) 1263–1274

u

5

h
D
h
g
r
w
S

5

m
t
t
e
p
fi
i
o
p
s
h

Table 3
The levels of the population size, crossover rate, and muta-
tion rate.

Factors Levels

Population size (PopSize) 100, 200
268 P.-C. Chang, S.-H. Chen / Applied

�Y : Machine 1: [6, 4, 3] and Machine 2: [5,2, 1]

�m1 = (152 − 116) + (151 − 122) = 65

�m2 = (144 − 110) = 34

C ′
max = max(395 + 65, 379 + 34) = 460

460 > 395

Because �Y is not better than �X, we do not exchange the sched-
le.

As a result, the final sequences for the two machines are:

Machine 1: [1,4, 3], Cm1 = 395
Machine 2: [5,2, 6], Cm2 = 379

The makespan is Cmax = 395 which is shown in Fig. 6.

. Methodology

These dominance properties can function as a standalone
euristic or to be integrated with meta-heuristic. The procedure of
P is described in Section 4.1. Moreover, this paper also proposes a
ybrid algorithm that combines these dominance properties with
enetic algorithm and simulated annealing. They are genetic algo-
ithms with dominance properties (GADP) and simulated annealing
ith dominance properties (SADP). Both of them are explained in

ections 5.2 and 5.3, respectively.

.1. Implementation of dominance properties

The dominance properties consider the exchanging jobs of inter-
achine interchange and intra-machine interchange. As a result,

his research utilizes the general pair-wise interchange (GPI) to do
he exchanges. In the beginning of DP, a random sequence is gen-
rated and all jobs are assigned into the machine. The dominance
roperties test whether the sequence on the same machine satis-
es the optimal condition when the algorithm does inter-machine
nterchange. For the inter-machine exchange, all the combinations
f the two jobs come from two machines that are tested. The whole
rocedures are iterated thirty times or the solution remains the
ame from previous iteration. The advantage of the standalone DP
euristics has a time-complexity of only O (k(n/m)2) to obtain a

Fig. 6. The representation of the final sequence of the two machines.
Crossover rate (Pc) 0.6, 0.9
Mutation rate (Pm) 0.1, 0.5

solution where k is the number of iterations and m is the number
of machines.

Even though the proposed DP heuristics is able to find an effec-
tive solution, it might fail to find out global optimal solution.
Consequently, the research seeks to integrate DP with GA and SA,
which are very effective at searching for global optimal. The hybrid
algorithms are shown in Sections 5.2 and 5.3.

5.2. Genetic algorithm with DP

There are two versions of genetic algorithm with dominance
properties, which are named GADP and GADP2. First, GADP applies
the initial solutions generated by DP heuristics as the initial popu-
lation. Based on these initial solutions, GA explores the solution
spaces with regular genetic operators, including the selection,
crossover, and mutation operator. The research employs the binary
tournament selection, two-point crossover, and swap mutation in
the GADP.

In GADP2, DP heuristics plays an important role in generating
the initial solutions and to enhance the solution quality produced
by Genetic algorithm. The hybrid algorithm takes the advantage of
DP which provides good initial solutions to avoid the blind search
of GA at the beginning while exploring the solution space. Fig. 7
demonstrates the detailed procedures of GADP2.

It is important to note that there is a parameter k to control the
introduction time of the DP algorithm. When the generation t is
divided by k completely, the current chromosomes will be inputted
to DP heuristics which will readjust the sequence of each job and
generate a new sequence. The only difference is that the input
solutions here for DP heuristics are the solutions which have been
evolved for k generations. After DP heuristics have been applied to
further improve the solutions, the hybrid algorithm will continue
to evolve the chromosomes. In other words, GADP2 will apply DP
many times to fine-tune the intermediate chromosomes generated
by the GA procedure.

Finally, the parameters of GA should be optimized because they
influence the performance of GA significantly. This study has uti-
lized the design of the experiment to select appropriate parameters.
Table 3 shows the levels of the population size, crossover rate,
and mutation rate. The final setup of each parameter after DOE is
shown in Table 4 presenting the best parameter configuration of
GA.
5.3. Simulated annealing with DP

Because SADP is compared with the proposed algorithm GADP
and GADP2, this section demonstrates the detail procedures of the

Table 4
The parameter settings of GA.

Parameter Value

Population size 100
Crossover rate 0.6
Mutation rate 0.5
Max number of iterations 500 × number of jobs

P.-C. Chang, S.-H. Chen / Applied Soft Computing 11 (2011) 1263–1274 1269

S
n
a
t
c

9-5-3-4-8-0. After the inverse, the new sequence becomes 0-8-4-
3-9-5 (Fig. 9).

Finally, the swap move is very easy to implement because it just
has to set two positions and exchange the two values of its position.
The result is shown in Fig. 10.
Fig. 7. Procedure of GADP2.

ADP. The idea of SADP is similar to GADP. In the very begin-
ing, DP generates a population of solutions and then we select
best solution among them. SA utilizes this solution to improve

he solution quality. SADP is defined in the following pseudo
ode.

initialTemperature: The initial temperature
˛: The cooling parameter
currentTemperature: The current temperature
finalTemperature: The final temperature and it is used as the ter-
mination criterion
numberOfMoves: The number of local search within the same tem-
perature
chromosome1: The solution object stores current solution and cor-
responding objective values

tempChromosomes: It is also a solution object which stores tem-
porarily solution by different kinds of moves
best: The best solution found so far

Main()://the main procedures of SADP
Fig. 8. Shift move.

1. initialParameters()
2. initialStage();
3. while counter < numberOfSolutionsExamined do
4. for i = 0 to numberOfMoves do
5. tempChromosomes = getMoves();
6. calcObjectiveValue();
7. tempChromosomes[0] = selectBetterMoves ();
8. acceptanceRule();
9. End for
10. currentTemperature * = ˛;
11. End while

Line 1 initiates the parameters used by the SA and the required
scheduling information could be processed by DP and SA. In the
initial stage (Line 2), a set of solutions is generated and then a best
solution is selected. After this, SA continues the exploration from
this solution from Line 3 to Line 10. Line 3 shows the stopping cri-
terion which sets the number of examined solutions. We fix the
number of examined solution as 100,000. Line 5 is an important
step to vibrate the current solution. The purpose of move is to do a
variation on current solution by local search. The move strategies
include swap move, 2-opt, 3-opt, k-opt, shift move, and inverse
move. The swap move is to swap two points of original path and
the 2-opt is to replace original two arcs, which are not nearby and
then connect two new arcs into the path. The work applies the swap
move, shift move, and inverse move together. They are described
below.

No matter for the shift move or inverse move, it needs to ran-
domly generate two cut points. We may call it “cut point 1” and “cut
point 2”. For shift move as shown in Fig. 8, we move the cut point
2 ahead the position of the range so that it replaces the original cut
point 1. Then, shifting all point forward for one space until at the
end of element on cut point 2. (Because it has been moved to the
place of cut point 1) Fig. 7 shows how the shift move works which
supposes there are 10 jobs.

The inverse move is to inverse the current position. Take Fig. 8
for instance, the original sequence between the two cut points is
Fig. 9. Inverse move.

1270 P.-C. Chang, S.-H. Chen / Applied Soft Computing 11 (2011) 1263–1274

Fig. 10. The swap move.

Table 5
The parameter settings.

Parameter Value

Initial temperature T0 = (lower bound) + (upper bound − lower
bound)/10

Final temperature Tf = lower bound

s
i
d
r
s
e
d
d
b
s

Table 6
ANOVA results of these three factors (together with block factors: instance and
machine type).

Source DF Seq SS Adj SS Adj MS F P

Instances 89 1.18E+11 1.18E+11 1.33E+09 6491.68 0
Type 2 8.19E+09 8.19E+09 4.1E+09 20015.06 0
Popsize 1 567,604 567,604 567,604 2.77 0.096
Pc 1 64,951 64,951 64,951 0.32 0.573
Pm 1 92,720 92,720 92,720 0.45 0.501
Popsize × Pc 1 35,661 35,661 35,661 0.17 0.676
Popsize × Pm 1 347,090 347,090 347,090 1.7 0.193
Pc × Pm 1 909,950 909,950 909,950 4.45 0.035

study follows the suggestions of Connolly [4]. The parameter con-
figuration of SA is shown in Table 5.

T
T

Cooling coefficient ˛ 0.99
Max number of iterations 500 × number of jobs

Line 6 is to evaluate the candidates generated by the three move
trategies. The best neighborhood solution among them is selected
n Line 7. This best move is then tested by the acceptance rule
efined in Line 8. If the neighborhood solution is better than cur-
ent solution, it goes without saying that it replaces the current
olution. On the other hand, if the neighborhood solution is wors-
ned, simulated annealing creates a chance to accept this solution
epending on the following condition. The characteristic of SA is

ifferent from traditional heuristics that may discard the neigh-
orhood solution. The following condition will accept the worse
olution when the random probability is less than or equal to the

able 7
he experimental result of the balanced instances.

m n DP SGA

Min Avg Max StDev Min Av

2 20 1242 1255 1268 6.30 1269 13
40 2446 2469 2487 10.17 2551 26
60 3665 3698 3740 18.62 3864 39
80 4863 4893 4925 14.73 5188 52

6 20 450 458 466 4.22 455 4
40 821 848 873 12.86 884 9
60 1238 1267 1294 13.65 1343 13
80 1639 1675 1709 16.76 1805 18

12 20 234 241 248 3.29 248 2
40 451 468 484 8.66 474 4
60 647 674 698 13.45 687 7
80 845 891 937 23.16 928 9

m n GADP2 SA

Min Avg Max StDev Min Av

2 20 1242 1254 1266 6.03 1297 13
40 2441 2459 2474 8.26 2718 28
60 3652 3675 3695 10.59 4145 42
80 4846 4872 4896 11.89 5569 57

6 20 448 454 459 3.08 470 5
40 809 831 853 11.00 933 9
60 1219 1246 1270 12.05 1395 14
80 1622 1648 1672 12.47 1883 19

12 20 235 239 244 2.29 259 2
40 444 455 468 5.91 501 5
60 809 649 667 10.08 714 7
80 819 849 884 16.51 967 9
Popsize × Pc × Pm 1 57,683 57,683 57,683 0.28 0.596
Error 21,501 4.4E+09 4.4E+09 204,697
Total 21,599 1.31E+11

value of energy function.

U(0, 1) ≤ e− f (X′)−f (x)
T ′

where: U(0,1): a random generated value is between 0 and 1; f(x):
the current objective value of x; f(x′): The objective value of the
neighborhood solution of x′; T′: the current temperature.

Then, the neighborhood solution is also compared with cur-
rent best solution. If it is better than current optimal solution, SA
replaces the current best solution by the neighborhood solution.

After certain iterations, we decrease the current temperature in
Line 10. Finally, the termination condition is that when the current-
Temperature < finalTemperature, the SA stops.

Because there are some parameters of SA to be configured, the
The bound information used here takes the average processing
time of each job; it selects the minimum and maximum processing
for each job on all the machines, respectively. The lower bound

GADP

g Max StDev Min Avg Max StDev

01 1330 15.23 1242 1255 1267 6.23
08 2676 31.59 2446 2469 2487 10.06
52 4052 46.79 3664 3695 3734 16.67
91 5424 58.71 4859 4892 4923 15.13

72 488 8.36 448 456 463 4.04
14 942 13.91 815 838 861 11.73
78 1414 17.27 1225 1252 1277 12.79
49 1887 20.59 1623 1655 1684 14.52

60 270 5.54 234 240 247 3.04
91 509 8.58 444 456 471 6.66
08 728 10.28 629 652 673 11.02
54 979 12.08 821 852 889 16.88

SADP

g Max StDev Min Avg Max StDev

95 1467 31.20 1196 1255 1338 33.80
14 2903 35.50 2371 2462 2550 35.90
65 4369 42.20 3588 3680 3764 41.20
00 5843 49.70 4753 4879 5045 59.10

05 531 10.24 441 455 481 8.80
70 997 10.48 796 841 892 18.53
44 1481 11.90 1210 1259 1295 15.50
28 1964 13.40 1606 1662 1705 18.80

80 294 5.37 229 241 265 5.15
22 536 6.45 440 466 493 10.84
43 759 6.46 628 669 715 15.25
95 1009 7.05 819 891 959 24.34

P.-C. Chang, S.-H. Chen / Applied Soft Computing 11 (2011) 1263–1274 1271

Table 8
The experimental result of the dominant processing time instances.

m n DP SGA GADP

Min Avg Max StDev Min Avg Max StDev Min Avg Max StDev

2 20 1989 2002 2014 6.18 2021 2048 2081 14.77 1989 2002 2014 6.17
40 3952 3980 4012 15.01 4037 4100 4174 32.80 3952 3979 4012 14.66
60 5926 5959 6005 18.59 6089 6182 6290 49.80 5925 5957 5994 16.66
80 7879 7930 7988 31.20 8116 8256 8420 73.42 7878 7924 7974 27.41

6 20 749 757 764 4.07 749 766 786 9.11 748 754 761 3.81
40 1336 1356 1378 10.31 1403 1434 1463 14.71 1332 1349 1369 9.12
60 2020 2041 2061 9.47 2092 2128 2164 17.53 1996 2032 2053 12.96
80 2642 2676 2709 16.73 2802 2852 2901 23.57 2630 2661 2690 14.75

12 20 386 392 401 3.64 399 410 419 5.16 385 392 399 3.43
40 750 767 784 8.64 770 791 809 9.39 744 756 769 6.21
60 1034 1069 1093 13.87 1063 1083 1103 10.03 1005 1031 1058 13.38
80 1362 1407 1460 24.47 1450 1477 1501 12.93 1339 1368 1408 17.23

m n GADP2 SA SADP

Min Avg Max StDev Min Avg Max StDev Min Avg Max StDev

2 20 1987 1999 2011 5.83 2050 2145 2218 30.60 1920 2001 2079 37.30
40 3944 3971 4010 15.18 4229 4325 4413 32.60 3878 3977 4087 35.60
60 5916 5943 5967 12.54 6365 6524 6644 48.10 5851 5949 6096 48.10
80 7857 7890 7918 14.71 8555 8715 8854 50.80 7792 7900 8058 61.60

6 20 747 752 757 3.00 765 805 829 9.95 731 753 781 7.32
40 1326 1341 1359 7.84 1453 1495 1522 11.40 1307 1348 1398 16.10
60 2004 2028 2043 9.33 2133 2201 2239 14.10 2001 2033 2073 12.50
80 2621 2650 2678 14.35 2887 2955 2992 15.70 2603 2664 2713 20.00

12 20 385 391 396 2.68 409 432 445 5.77 378 393 406 5.15
40 743 754 767 5.80 796 826 842 7.61 736 763 797 11.33

11
15

a
e

l

u

60 1003 1028 1055 13.03 1097
80 1337 1365 1402 15.72 1498

nd the upper bound of the algorithm are set by the following
quations.

ower bound =
∑n

j=1arg min(APijk)

m
, i ∈ jobs, k ∈ machines (9)
pper bound =
∑n

j=1arg max(APijk)

m
, i ∈ jobs, k ∈ machines (10)

Fig. 11. Interaction pl
22 1139 6.21 1007 1065 1103 15.30
23 1541 7.73 1329 1407 1480 26.50

6. Experimental results

The test instances of this unrelated parallel machine problem are
provided by Rabadi et al. [35]. The number of jobs includes 20, 40,
60, and 80. The data distribution for processing time (pij) and setup
time (sij) are balanced. Because there are 15 instance replications
of each combination, the total number of instances is 540.
The parameter configuration of GA is done by the Design-of-
Experiment before. The levels of the three factors are listed in the
following Table 5. Each parameter combination is replicated 30
times.

ot of Pc and Pm.

1272 P.-C. Chang, S.-H. Chen / Applied Soft Computing 11 (2011) 1263–1274

T
T

T
A

Fig. 12. Main effect plot of the

able 9
he experimental result of the dominant setup time instances.

m n DP SGA

Min Avg Max StDev Min A

2 20 1994 2007 2020 6.38 2023 2
40 3942 3970 4011 17.01 4031 4
60 5908 5942 5976 16.39 6073 6
80 7850 7891 7965 25.27 8102 8

6 20 748 758 766 4.87 751
40 1337 1356 1375 8.60 1404 1
60 2019 2040 2060 9.79 2090 2
80 2643 2676 2706 15.25 2805 2

12 20 383 390 398 3.58 398
40 750 765 783 8.95 769
60 1031 1069 1093 14.75 1061 1
80 1361 1404 1454 21.59 1453 1

m n GADP2 SA

Min Avg Max StDev Min A

2 20 1990 2002 2014 6.02 2030 2
40 3935 3964 4001 15.67 4203 4
60 5898 5926 5950 12.25 6376 6
80 7829 7864 7894 15.62 8519 8

6 20 747 753 759 3.25 766
40 1329 1344 1360 7.49 1458 1
60 2004 2027 2042 9.04 2155 2
80 2627 2653 2676 12.51 2907 2

12 20 383 388 394 2.66 414
40 741 752 765 6.14 797
60 1000 1028 1057 13.35 1091 1
80 1334 1362 1398 15.00 1496 1

able 10
NOVA test of the experiment.

Source DF SS

Type 1 2.105E+10
Instances 155 2.948E+11
Type × instances 155 1.526E+10
Method 5 757,891,007
Type × method 5 470046.79
Instances × method 775 651,513,926
Type × instance × method 775 3031145.1
Instances × method 775 651,513,926
Type × instance × method 775 3031145.1
Error 95,328 47,209,017
Corrected total 97,199 4.203E+11
three factors of the GA.

GADP

vg Max StDev Min Avg Max StDev

051 2085 14.45 1993 2006 2019 6.21
097 4162 32.59 3941 3969 4009 16.66
166 6272 51.55 5907 5940 5973 15.97
236 8380 69.01 7850 7888 7934 19.99

768 786 8.76 746 754 764 4.84
436 1466 14.99 1334 1350 1368 8.40
130 2163 17.99 2006 2032 2052 11.09
850 2898 22.87 2631 2660 2689 14.07

410 421 5.67 383 389 396 3.26
790 808 9.66 743 755 768 6.63
082 1102 10.73 1005 1030 1056 12.87
478 1502 12.25 1340 1366 1401 15.55

SADP

vg Max StDev Min Avg Max StDev

146 2212 28.70 1927 2005 2086 27.80
323 4430 35.10 3889 3970 4066 33.10
514 6618 42.10 5830 5932 6023 38.90
698 8827 48.20 7734 7875 8002 54.50

806 830 10.35 736 755 783 9.30
498 1522 11.90 1315 1349 1392 13.70
205 2236 12.30 1991 2032 2072 15.70
953 2996 15.30 2606 2666 2717 18.10

432 444 5.17 379 390 414 4.81
826 846 7.86 734 760 790 10.61
122 1137 6.54 1008 1066 1103 16.30
523 1540 7.96 1326 1400 1471 24.50

Mean square F-Value Pr > F

2.105E+10 4.25E+07 <.0001
1.902E+09 3,840,723 <.0001
98,428,645 198,755 <.0001
151,578,201 306,078 <.0001
94009.357 189.83 <.0001
840663.13 1697.53 <.0001
3911.155 7.9 <.0001
840663.13 1697.53 <.0001
3911.155 7.9 <.0001
495.22718

P.-C. Chang, S.-H. Chen / Applied Soft Computing 11 (2011) 1263–1274 1273

Table 11
Duncan pair-wise comparison of these six methods through all instances.

Duncan grouping Mean N Method

A 2435.43 16,200 SA
B 2311.14 16,200 SGA
C 2206.63 16,200 DP
D 2200.37 16,200 SADP
E 2195.94 16,200 GADP
F 2189.06 16,200 GADP2

Table 12
The comparison between GADP2 and PH’s Algorithm.

m n Balanced processing time Dominant processing time Dominant setup time

LB GADP2 PH’s Algorithm LB GADP2 PH’s Algorithm LB GADP2 PH’s Algorithm

2 20 1186 1254 1296 1933 1999 2046 1936 2002 2050
40 2345 2459 2521 3844 3971 4019 3834 3964 4031
60 3510 3675 3733 5767 5943 5997 5755 5926 5980
80 4665 4872 4927 7672 7890 7933 7649 7864 7914

6 20 362 454 480 613 752 779 611 753 776
40 717 831 848 1214 1341 1361 1218 1344 1371
60 1071 1246 1232 1823 2028 1965 1822 2027 1969
80 1429 1648 1626 2426 2650 2673 2428 2653 2670

t
t
u
P
a
b
f
u
F

S
A
m
t
i
m
w
p
F
T
e

e
a
c

A
o
t
c
b
c
G

c
G
a

12 20 175 239 250 300
40 347 455 473 597
60 519 649 627 894
80 690 849 830 1191

When we examine the significance of these factors, the ANOVA
able as shown in Table 6 indicates that there is significant between
he crossover rate and mutation rate. Consequently, we further
se the interaction plot in Fig. 11 to select the setting of Pc and
m. We found when we set the crossover rate and mutation rate
t the level 0.6 and 0.5, respectively; the algorithm will yield a
etter solution quality. Because there is no significant difference
or population size when they are set as 100 and 200, the pop-
lation size is set as the 100 based on the main effect plot in
ig. 12.

This research compares the performance of DP heuristics, GA,
A, GADP, GADP2, SADP, and Partition Heuristic Algorithm. PH’s
lgorithm is proposed by Al-Salem [35] in solving the parallel
achines scheduling problems. There are three heuristics sequen-

ially applied in the PH algorithm to minimize the makespan,
ncluding the constructive, improvement, and a traveling sales-

an problem (TSP)-like heuristic. Constructive is the first heuristic
hich assigns the jobs to machines. Secondly, an improvement
rocedure is used to improve the previous constructed solution.
inally, similar to the heuristic of traveling salesman problem, a
SP-like heuristic is applied, which sets the sequence of jobs on
ach machine.

The following Tables 7–9 are the empirical result of the differ-
nt types of instances. DP heuristic performs the best among these
lgorithms such as GA, SA and DP. Moreover, when GA and SA are
ombined with DP, the overall performances are further enhanced.

In order to validate the significance among these algorithms,
NOVA is employed to test it, which shows significant differences
f these factors in Table 10. The Duncan pair-wise comparison
ests the significance among these methods in Table 11. The Dun-
an grouping presents each algorithm located in different group
ecause they share different alphabet. As a result, there is statisti-
al significance between any two algorithms. The best algorithm is

ADP2, the second best is GADP, and the worst is SA.

Finally, because GADP2 is the best among all algorithms, it is
ompared with PH’ algorithm again. As shown in Table 12, we found
ADP2 outperforms PH’s algorithm consistently except the job sets
re 60 and 80 on machine 6 and 12.
391 402 299 388 398
754 769 597 752 769

1028 986 894 1028 990
1365 1348 1192 1362 1357

7. Conclusions and future direction of research

The problem addressed in this paper is referred to the unrelated
parallel machine scheduling problem (PMSP) with machine-
dependent and sequence-dependent setup times to minimize the
makespan. This research derives the dominance properties for
unrelated parallel machine scheduling problem. According to the
empirical results, the proposed DP heuristic outperforms GA and
SA in effectiveness (the solution quality) and efficiency (less com-
putational time). Moreover, DP heuristics can be integrated with
meta-heuristic and the hybrid algorithm is a novel approach in solv-
ing the scheduling problems. GADP is able to find optimal solutions
for all small problems. For large problems, GADP when compared
to GA, SA and GADP still outperforms the other two approaches in
nearly all instances.

It will be interesting to extend this work by including local
heuristic such as PH algorithm in GADP and investigate whether
more improvement can be further accomplished. Or, solutions from
these combinations of different heuristics can be injected into the
population during the evolution of the GA. Benchmark data sets
and solutions for both heuristics used in this paper are made avail-
able in our website for other researchers to compare their solution
methodologies.

References

[1] Allahverdi, J.N.D. Gupta, T. Aldowaisan, A review of scheduling research involv-
ing setup considerations, Omega 27 (2) (1999) 219–239.

[3] M. Asano, H. Ohta, A heuristic for job shop scheduling to minimize total
weighted tardiness, Computers and Industrial Engineering 42 (2–4) (2002)
137–147.

[4] P. Brucker, S. Knust, A. Schoo, O. Thiele, A branch and bound algorithm for the
resource-constrained project scheduling problem, European Journal of Opera-
tional Research 107 (2) (1998) 272–288.
[5] P.C. Chang, J.C. Hsieh, Y.W. Wang, Genetic algorithms applied in BOPP film
scheduling problems: minimizing total absolute deviation and setup times,
Applied Soft Computing 3 (2) (2003) 139–148.

[6] P.C. Chang, S.H. Chen, K.L. Lin, Two phase sub-population genetic algorithm for
parallel machine scheduling problem, Expert Systems with Applications 29 (3)
(2005) 705–712.

1 Soft C

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

886–894.
[39] K.-C. Tan, R. Narasimhan, P.A. Rubin, G.L. Ragatz, A Comparison of four methods
274 P.-C. Chang, S.-H. Chen / Applied

[7] P.C. Chang, J.C. Hsieh, C.H. Liu, A case-injected genetic algorithm for single
machine scheduling problems with release time, International Journal of Pro-
duction Economics 103 (2) (2006) 551–564.

[8] P.C. Chang, J.C. Hsieh, C.Y. Wang, Adaptive multi-objective genetic algorithms
for scheduling to drilling operation of printed circuit board industry, Applied
Soft Computing Journal 7 (3) (2007) 800–806.

[9] P.C. Chang, S.-H. Chen, C.-Y. Fan, Mining gene structures to inject artificial chro-
mosomes for genetic algorithm in single machine scheduling problems, Applied
Soft Computing Journal 8 (1) (2008) 767–777.

10] P.C. Chang, S.H. Chen, The development of a sub-population genetic algorithm
II (SPGAII) for the Multi-objective combinatorial problems, Applied Soft Com-
puting Journal 9 (1) (2009) 173–181.

11] P.C. Chang, T.W. Liao, Combining SOM and fuzzy rule base for flow time pre-
diction in semiconductor manufacturing factory, Applied Soft Computing 6 (2)
(2006) 198–206.

12] F.D. Chou, P.C. Chang, H.M. Wang, A hybrid genetic algorithm to minimize
makespan for the single batch machine dynamic scheduling problem, Inter-
national Journal of Advanced Manufacturing Technology 31 (3/4) (2006)
350–359.

13] D.T. Connolly, An improved annealing scheme for the quadratic assignment
problems, European Journal of Operational Research 46 (1) (1990) 93–100.

14] S. Dunstall, A. Wirth, Heuristic methods for the identical parallel machine flow
time problem with set-up times, Computers and Operations Research 32 (9)
(2005) 2479–2491.

15] P.M. França, M. Gendreau, G. Laporte, F.M. Müller, A tabu search heuristic for
the multiprocessor scheduling problem with sequence dependent setup times,
International Journal of Production Economics 43 (2/3) (1996) 79–89.

16] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

17] M. Ghirardi, C.N. Potts, Makespan minimization for scheduling unrelated par-
allel machines: a recovering beam search approach, European Journal of
Operational Research 165 (2) (2005) 457–467.

18] C.A. Glass, C.N. Potts, P. Shade, Unrelated parallel machine scheduling using
local search, Mathematical and Computer Modelling 20 (2) (1994) 41–52.

19] S.C. Graves, A review of production scheduling, Operations Research 29 (4)
(1981) 646–675.

20] A. Guinet, A. Dussauchy, Scheduling sequence-dependent jobs on identical par-
allel machines to minimize completion time criteria, International Journal of
Production Research 31 (1993) 1579–1594.
21] J.C. Hsieh, P.C. Chang, L.C. Hsu, Scheduling of drilling operations in printed-
circuit-board factory, Computers and Industrial Engineering 44 (3) (2003)
461–473.

22] D.W. Kim, K.H. Kim, W. Jane, F.F. Chen, Unrelated parallel machine scheduling
with setup times using simulated annealing, Robotics and Computer Integrated
Manufacturing 18 (3/4) (2002) 223–231.

[

omputing 11 (2011) 1263–1274

23] D.W. Kim, D.G. Na, F.F. Chen, Unrelated parallel machine scheduling with setup
times and a total weighted tardiness objective, Robotics and Computer Inte-
grated Manufacturing 19 (1/2) (2003) 173–181.

24] S.C. Kim, P.M. Bobrowski, Scheduling jobs with uncertain setup times and
sequence dependency, Omega 25 (4) (1997) 437–447.

25] M.E. Kurz, R.G. Askin, Heuristic scheduling of parallel machines with sequence-
dependent set-up times, International Journal of Production Research 39 (16)
(2001) 3747–3769.

26] G. Lancia, Scheduling jobs with release dates and tails on two unrelated parallel
machines to minimize the Makespan, European Journal of Operational Research
120 (2) (2000) 277–288.

27] C.Y. Liaw, Y.K. Lin, C.Y. Chen, M. Chen, Scheduling unrelated parallel machines
to minimize total weighted tardiness, Computers & Operations Research 30
(12) (2003) 1777–1789.

28] Y. Lin, W. Li, Parallel machine scheduling of machine-dependent jobs with unit-
length, European Journal of Operational Research 156 (1) (2004) 261–266.

29] C.Y. Liu, S.C. Chang, Scheduling flexible flow shops with sequence-dependent
setup effects, IEEE Transactions on Robotic Automation 16 (4) (2000) 408–429.

30] S. Martello, F. Soumis, P. Toth, Exact and approximation algorithms for
Makespan minimization on unrelated parallel machines, Discrete Applied
Mathematics 75 (2) (1997) 169–188.

31] H. Missbauer, Order release and sequence-dependent setup times, Interna-
tional Journal of Production Economics 49 (2) (1997) 131–143.

32] E. Mokotoff, Parallel machine scheduling problems: a survey, Asia-Pacific, Jour-
nal of Operational Research 18 (2) (2001) 193–242.

33] J.-C. Picard, M. Queyranne, On the integer-valued variables in the linear vertex
packing problem, Mathematical Programming 12 (1) (1977) 97–101.

34] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall, NJ,
1995.

35] G. Rabadi, R.J. Moraga, A. Al-Salem, Heuristics for the unrelated parallel machine
scheduling problem with setup times, Journal of Intelligent Manufacturing 17
(1) (2006) 85–97.

36] S. Radhakrishnan, J.A. Ventura, Simulated annealing for parallel machine
scheduling with earliness-tardiness penalties and sequence-dependent set-up
times, International Journal of Production Research 38 (10) (2000) 2233–2252.

38] B. Srivastava, An effective heuristic for minimizing makespan on unrelated
parallel machines, Journal of the Operational Research Society 49 (8) (1998)
for minimizing total tardiness on a single processor with sequence dependent
setup times, Omega 28 (3) (2000) 313–326.

40] R. Zhang, C. Wu, A hybrid immune simulated annealing algorithm for the job
shop scheduling problem, Applied Soft Computing 10 (1) (2010) 79–89.

	Integrating dominance properties with genetic algorithms for parallel machine scheduling problems with setup times
	Introduction
	Literature review
	Problem definition
	Derivations of dominance properties
	Inter-machine interchange
	Intra-machine exchanging
	The objective difference of machine k1
	The objective difference of machine k2

	A case study for dominance properties application

	Methodology
	Implementation of dominance properties
	Genetic algorithm with DP
	Simulated annealing with DP

	Experimental results
	Conclusions and future direction of research
	References

