
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2010 ISSN 1349-4198
Volume 7, Number 4, 4 2011 pp. 1–23

A GENETIC ALGORITHM ENHANCED BY DOMINANCE
PROPERTIES FOR SINGLE MACHINE SCHEDULING PROBLEMS

WITH SETUP COSTS

Pei-Chann Chang

Department of Information Management
Yuan-Ze University

135 Yuan-Dong Rd., Taoyuan 32026, Taiwan, R.O.C
iepchang@saturn.yzu.edu.tw

Shih-Hsin Chen

Department of Electronic Commerce Management
Nanhua University

No. 32, Chungkeng, Dalin, Chiayi 62248, Taiwan R.O.C.
shihhsin@mail.nhu.edu.tw

Ting Lie

Department of Information Management
Yuan-Ze University

135 Yuan-Dong Rd., Taoyuan 32026, Taiwan, R.O.C
tinglie@saturn.yzu.edu.tw

Julie Yu-Chih Liu

Department of Information Management
Yuan-Ze University

135 Yuan-Dong Rd., Taoyuan 32026, Taiwan, R.O.C
imyuchih@saturn.yzu.edu.tw

Abstract. This paper considers a single machine scheduling problem in which 𝑛 jobs
are to be processed and a machine setup time is required when the machine switches jobs
from one to the other. All jobs have a common due date that has been predetermined
using the median of the set of sequenced jobs. The objective is to find an optimal
sequence of the set of 𝑛 jobs to minimize the sum of the job’s setups and the cost
of tardy or early jobs related to the common due date. In this research, dominance
properties are developed by swapping the neighborhood jobs. The time complexity of
the dominance properties is in 𝑂(𝑛2) and it is very efficient when combined with the GA.
To prevent earlier convergence of a Simple Genetic Algorithm (SGA), these dominance
properties are further embedded in SGA to improve the efficiency and effectiveness of
the global searching procedure. Analytical results in benchmark problems are presented
and the computational algorithms are developed.

1. Introduction. Single-machine scheduling problems are one of the well-studied prob-
lems by many researchers. The application of single machine scheduling with setups can
be found in minimizing the cycle time for pick and place (PAP) operations in Printed
Circuit Board manufacturing company [24]; in a steel wire factory in China [22] and a se-
quencing problem in the weaving industry [2]. The results developed in the literature not
only provide the insights into the single machine problem but also for more complicated
environment such as flow shop or job shop.

1



2 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

The problem considered in this paper is to schedule a set of 𝑛 jobs {𝑗1, 𝑗2, ⋅ ⋅ ⋅ , 𝑗𝑛} on a
single machine that is capable of processing only one job at a time without preemption.
As explained in [6], and [30], all jobs are available at time zero, and a job 𝑗 requires a
processing time 𝑃𝑗. Job 𝑗 belongs to a group 𝑔𝑗 ∈ {1, . . . , 𝑞} (with 𝑞 ≤ 𝑛). Setup or
changeover times, which are given as two 𝑞 × 𝑞 matrices, are associated to these groups.
This means that in a schedule where 𝑗𝑗 is processed immediately after 𝑗𝑖 where 𝑖, 𝑗 ∈
{1, 2, ⋅ ⋅ ⋅ , 𝑛} , there must be a setup time of at least 𝑆𝑖𝑗 time units between the completion
time of 𝑗𝑖, denoted by 𝐶𝑖, and the start time of 𝑗𝑗 , which is 𝐶𝑗 − 𝑃𝑗. During this
setup period, no other task can be performed by the machine and we assume that the
cost of the setup operation is 𝑐 (𝑔𝑖; 𝑔𝑗) ≥ 0 and let it be equal to Machine setup time
𝑆𝑖𝑗 which is included as sequence dependent. The objective is to complete all the jobs
as close as possible to a large, common due date 𝑑. To accomplish this objective, the
summation of earliness and tardiness is minimized. The earliness of job 𝑗 is denoted as
𝐸𝑗 = max (0, 𝑑− 𝐶𝑗) and its tardiness as 𝑇𝑗 = max (𝐶𝑗 − 𝑑, 0), where 𝐶𝑗 is the completion
time of job j. Earliness and tardiness penalties for job 𝑗 are weighted equally. The
objective function is given by

min𝑍 =
𝑛∑

𝑗=1

(𝐸𝑗 + 𝑇𝑗) =
𝑛∑

𝑗=1

∣𝑑− 𝐶𝑗∣ (1)

The inclusion of both earliness and tardiness costs in the objective function is compatible
with the philosophy of just-in-time production, which emphasizes producing goods only
when they are needed. The early cost may represent the cost of completing a product early,
the deterioration cost for a perishable goods or a holding (stock) cost for finished goods.
The tardy cost can represent rush shipping costs, lost sales and loss of goodwill. Some
specific examples of production settings with these characteristics are provided by [28],
[31], [32] and [34]. The set of jobs is assumed to be ready for processing at the beginning
which is a characteristic of the deterministic problem. The set of jobs is assumed to
be ready for processing at the beginning which is a characteristic of the deterministic
problem. As a generalization of weighted tardiness scheduling, the problem is strongly
NP-hard in [25]. Consequently, the early/tardy problem is also a strong NP-hard problem.
The single-machine 𝐸/𝑇 problem was first introduced by [23]. Since then many re-

searchers worked on various extensions of the problem. Baker and Scudder [6] published
a comprehensive state-of-the-art review for different versions of the 𝐸/𝑇 problem. Kanet
[23] examined the 𝐸/𝑇 problem with equal penalties and unrestricted common due date.
A problem is considered unrestricted when the due date is large enough not to constrain
the scheduling process. He introduced a polynomial-time algorithm to solve the problem
optimally. Hall et al. [18] extended Kanet’s work and developed an algorithm that finds
a set of optimal solutions for the problem based on some optimality conditions. Hall and
Posner [19] solved the weighted version of the problem with no setup times. Azizoglu
and Webster [4] introduced a Branch-and-Bound algorithm to solve the problem with
setup times; however, they assumed that setup times are not sequence dependent. Other
researchers worked on the same problem but with a restricted due date (see for example
[1], [5], [14], [19], [26], and [27]). Other interesting applications of scheduling problems
with intelligent approaches can also be found in [20], [21], [29], [30], and [33].
In most of the 𝐸/𝑇 literature, it has been assumed that no setup time is required. In

many realistic situations, however, setup times are needed and are sequence-dependent.
In general, scheduling problems with sequence-dependent setup times are similar to the
traveling salesman problem (TSP) in [16], which is also NP-hard [25]. Coleman [15]
presented a 0/1 mixed integer programming model (MIP) for the single-machine 𝐸/𝑇



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 3

problem with job-dependent penalties, distinct due dates, and sequence-dependent setup
times. Coleman’s work was one of the few papers that dealt with the 𝐸/𝑇 problem with
sequence-dependent setup times, but for a small number of jobs. Chen [13] addressed the
𝐸/𝑇 problem with batch sequence-dependent setup times. He showed that the problem
with unequal penalties is NP-hard even when there are only two batches of jobs and two
due dates that are unrestrictedly large. Allahverdi et al. [3] reviewed the scheduling
literature that involved setup times. In their review, very few papers addressed the 𝐸/𝑇
problem with setup times, and no paper tackled the problem addressed in this research
with the development of dominance properties. Application of Genetic Algorithm (GA)
in various scheduling problems can be referred in [7, 8, 9,10, 11 and 12], however, as
observed by most researchers, the simple GA will be trapped into local optimality in the
earlier stages and cannot be converged into global optimal in most of the cases. The
problems with the steady states GAs having premature convergence led to the desire to
further improve the convergence of the algorithm. Therefore, in this research dominance
properties are developed according to the sequence swapping of two neighborhood jobs
and these dominance properties are further embedded in the Simple Genetic Algorithm
to improve the efficiency and effectiveness of the global searching procedure. The time
complexity of the dominance properties is in 𝑂(𝑛2) and it is very efficient when combined
with the GA.

2. PROBLEM STATEMENTS. We consider the sequence-dependent scheduling prob-
lem with a common due date. The common due date model corresponds; for instance,
to an assembly system in which the components of the product should be ready at the
same time, or to a shop where several jobs constitute a single customer’s order in [17].
It is shown in [23] that an optimal sequence in which the 𝑏-th job is completed at the
due-date. The value of 𝑏 is given by:

𝑏 =

{
𝑛/2 if 𝑛 is even
(𝑛+ 1)/2 if 𝑛 is odd

, (2)

The common due-date (𝑘∗) is the sum of processing times of jobs in the first 𝑏 positions
in the sequence; i.e.,

𝑘∗ = 𝐶𝑏 (3)

As soon as the common due date is assigned, see Fig. 1, jobs can be classified into two
groups that are early and tardy which are at position from 1 to 𝑏 and 𝑏+1 to n respectively.
The following notations are employed in the latter section.
[𝑗]: job in position j
A: the job set of tardy jobs
B: the job set of early jobs
𝐴𝑃[𝑗][𝑗+1]: Adjusted processing time for the job in position j followed by the job in position
[j+1]
𝑏: the median position
𝐴𝑃[𝑗][𝑗+1] is actually the processing time of job 𝑗 + 1 with setup time. Thus, the original
form of 𝐴𝑃[𝑗][𝑗+1] is 𝑆[𝑗][𝑗+1] + 𝑃𝑗+1.
Our objective is to minimize the total earliness/tardiness cost. The formulation is given
below.



4 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

Figure 1. The total earliness and total tardiness for a pre-assigned due-
date d

(a) Adjacent interchange

(b) Nonadjacent interchange

Figure 2. Two different types of interchanging methods

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) =
𝑛∑

𝑖=1

(𝐸𝑖 + 𝑇𝑖) = 𝑇𝑇 + 𝑇𝐸 (4)

where
TT : Total tardiness for a job sequence
TE : Total earliness for a job sequence

𝑇𝑇 =
𝑛−1∑
𝑗=𝑏

(𝑛− 𝑗)𝐴𝑃[𝑗][𝑗+1] (5)

𝑇𝐸 =
𝑏∑

𝑗=1

(𝑗 − 1)𝐴𝑃[𝑗−1][𝑗] (6)

3. DERIVATIONS OF DOMINANCE PROPERTIES. We consider the problem
of scheduling n jobs in a single machine and derive the dominance properties (necessary
conditions) of the optimal schedule. In this section, we use the objective function (𝑍(

∏
))

for total absolute deviation for the schedule
∏
. To develop these dominance properties,

we will consider interchanging two adjacent jobs and nonadjacent jobs in the schedule, and
prove some intermediate results. The adjacent interchange and nonadjacent interchange
of job 𝑖 and job 𝑗 are depicted at figure 2(a) and 2(b) respectively.
Thus, there are two schedules, i.e.,

∏
𝑋 for schedule𝑋 and

∏
𝑌 for the modified schedule

𝑌 . The corresponding objective functions of
∏

𝑋 and
∏

𝑌 , i.e., 𝑍(
∏

𝑋) and 𝑍(
∏

𝑌 ), are
listed as follows:

𝑍(
∏
𝑥

) = 𝐺1 +𝐺2 +𝐺3 (7)



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 5

𝑍(
∏
𝑦

) = 𝐺
′
1 +𝐺

′
2 +𝐺

′
3 (8)

where

1. 𝐺1: the objective of job(s) before job 𝑖
2. 𝐺2: the objective between job 𝑖 and job 𝑗
3. 𝐺3: the objective of job(s) after job 𝑗
4. 𝐺

′
1: the objective job(s) before job 𝑗

5. 𝐺
′
2: the objective between job 𝑗 and job 𝑖

6. 𝐺
′
3: the objective of job(s) after job 𝑖

We compare schedules
∏

𝑋 and
∏

𝑌 by finding the conditions under which
∏

𝑋 is better
than

∏
𝑌 . For a pair of jobs, i.e., job 𝑖 and job 𝑗 in a schedule, no matter for adjacent

interchange or nonadjacent interchange, they are in one of the following status:

1. Job 𝑖 is early and job 𝑗 is early
2. Job 𝑖 is early and job 𝑗 is on-time
3. Job 𝑖 is on-time and job 𝑗 is tardy
4. 𝑡: Job 𝑖 is tardy and job 𝑗 is tardy

Because the objective values of a schedule with adjacent or nonadjacent interchange
are different, there are totally 8 conditions corresponding to these two types of exchanges.
Other than the cases discussed above, there is one extra case to be discussed in nonadjacent
interchange which is the following:

1. Job 𝑖 is early and job 𝑗 is tardy

According to the cases discussed above, there are four dominance properties for the
adjacent interchange which are explained at section 3.1 and five dominance properties for
the nonadjacent interchange which are shown at section 3.2.

3.1. Dominance Properties for Adjacent Interchange. When we exchange two ad-
jacent jobs as shown in Figure 3, the objective values of related jobs in position 𝑖, 𝑖+1,
and 𝑖+2 are changed while the others are still the same. These objective terms in posi-
tion 𝑖, 𝑖+1, and 𝑖+2 are different. Consequently, when we subtract 𝑍(

∏
𝑌 ) from 𝑍(

∏
𝑋),

redundant terms are reduced.
Lemma 1a. In a given schedule

∏
𝑋 , for any two adjacent jobs (job 𝑖 and job 𝑗) are both

early, then the total deviation of 𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑗 − 1)(𝐴𝑃[𝑗][𝑖]) + (𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑗 − 1)(𝐴𝑃[𝑖][𝑗]) + (𝑗)(𝐴𝑃[𝑗][𝑗+1])

Proof:
Figure 3 shows the relationships among these jobs.

Figure 3. Swapping job 𝑖 and job 𝑗 when both of them are adjacent and early.

The difference of the objective between 𝑍(
∏

𝑋) and 𝑍(
∏

𝑌 ) are shown as follows:



6 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

∵ 𝐺1 =
𝑖−2∑
𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘][𝑘+1]

𝐺2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑖] + (𝑗 − 1)𝐴𝑃[𝑖][𝑗]

𝐺3 =
𝑏∑

𝑘=𝑗+1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +
𝑛−1∑
𝑘=𝑏

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺
′
2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑗] + (𝑗 − 1)𝐴𝑃[𝑖][𝑗]

𝐺
′
3 =

𝑏∑
𝑘=𝑖+1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +
𝑛−1∑
𝑘=𝑏

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

To derive the condition under which 𝑍(
∏

𝑋) ≥ 𝑍(
∏

𝑌 ), the value of 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) is

calculated. Let X = 𝑍(
∏

𝑌 ) − 𝑍(
∏

𝑋) and is equal to(𝐺
′
2 − 𝐺2) + (𝐺

′
3 − 𝐺3). From the

above expression, we can derive the following:

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑗 − 1)(𝐴𝑃[𝑗][𝑖]) + (𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑗 − 1)(𝐴𝑃[𝑖][𝑗]) + (𝑗)(𝐴𝑃[𝑗][𝑗+1])

Therefore 𝑋 ≤ 0, the schedule
∏

𝑌 is better than schedule
∏

𝑋 ; i.e., 𝑍(
∏

𝑌 )< 𝑍(
∏

𝑋).
Then, job 𝑗 should be scheduled before job 𝑖.
Lemma 2a. In a given schedule

∏
𝑋 , for any two adjacent jobs (job 𝑖 and job 𝑗) are

early and on-time, then the total deviation of 𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑗 − 1)(𝐴𝑃[𝑗][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1])≤ (𝑖−1)(𝐴𝑃[𝑖−1][𝑖])+(𝑗 − 1)(𝐴𝑃[𝑖][𝑗])+
(𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Figure 4. Swapping job 𝑖 and job 𝑗 when one job is on-time and the other
is early.

Lemma 3a. In a given schedule
∏

𝑋 , for any two adjacent jobs (job 𝑖 and job 𝑗) are
on-time and tardy, then the total deviation of 𝑍(

∏
𝑌 ) is better than 𝑍(

∏
𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1])≤ (𝑖− 1)(𝐴𝑃[𝑖−1][𝑖])+(𝑛− 𝑖)(𝐴𝑃[𝑖][𝑗])+
(𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Figure 5. Swapping job 𝑖 and job 𝑗 when one job is on-time and the other
is tardy.



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 7

Lemma 4a. In a given schedule
∏

𝑋 , for any two adjacent jobs (job 𝑖 and job 𝑗)
are both tardy, then the total deviation of 𝑍(

∏
𝑌 ) is better than 𝑍(

∏
𝑋) only when

(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1])≤ (𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑖]) +
(𝑛− 𝑗 + 1)(𝐴𝑃[𝑖][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Figure 6. Swapping job 𝑖 and job 𝑗 when both of them are tardy and nonadjacent.

Lemmas discussed above are the properties for adjacent exchange between any two
jobs. The next section considers the dominance properties for any two jobs which are not
adjacent.

3.2. Dominance Properties for Nonadjacent Interchange. If the pair of jobs are
nonadjacent, the jobs to be considered will be in positions 𝑖, 𝑖+1, k, and k +1. Therefore,
when compared with the adjacent neighborhood interchange, there is an extra term in
the objective function, i.e., when we compare the 𝑍(

∏
𝑋) with 𝑍(

∏
𝑌 ).

Lemma 1b. In a given schedule
∏

𝑋 , for any two nonadjacent jobs (job 𝑖 and job 𝑗) are
both early, then the total deviation of 𝑍(

∏
𝑌 ) is better than 𝑍(

∏
𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑗)(𝐴𝑃[𝑖][𝑗+1])

≤ (𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑗)(𝐴𝑃[𝑗][𝑗+1])

Proof.
Figure 7 shows the relationship among these jobs.

Figure 7. Swapping nonadjacent job 𝑖 and job 𝑗 when both of them are early.

The difference between 𝑍(
∏

𝑋) and 𝑍(
∏

𝑌 ) are shown as follows:

∵ 𝐺1 =
𝑖−2∑
𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘][𝑘+1]

𝐺2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑖] + 𝑖∗𝐴𝑃[𝑖][𝑖+1] +

𝑗−1∑
𝑘=𝑖+2

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] + (𝑗 − 1)𝐴𝑃[𝑗−1][𝑗]

𝐺3 =
𝑏∑

𝑘=𝑗+1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +
𝑛−1∑
𝑘=𝑏

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺
′
1 = 𝐺1



8 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

𝐺
′
2 = (𝑗 − 1)𝐴𝑃[𝑖−1][𝑗] + 𝑗∗𝐴𝑃[𝑗][𝑖+1] +

𝑖−1∑
𝑘=𝑗+2

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] + (𝑖− 1)𝐴𝑃[𝑗−1][𝑖]

𝐺
′
3 =

𝑏∑
𝑘=𝑖+1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +
𝑛−1∑
𝑘=𝑏

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, then the following condition hold:

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑗)(𝐴𝑃[𝑖][𝑗+1])

≤ (𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑗)(𝐴𝑃[𝑗][𝑗+1]).

Therefore, job 𝑖 and job 𝑗 are interchanged.
Lemma 2b. In a given schedule

∏
𝑋 , for any two nonadjacent jobs (job 𝑖 and job 𝑗) are

early and on-time, then the total deviation of 𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Figure 8. Swapping nonadjacent job 𝑖 and job 𝑗 when one job is on-time
and the other is early.

Lemma 3b. In a given schedule
∏

𝑋 , for any two nonadjacent jobs (job 𝑖 and job 𝑗) are
on-time and tardy, then the total deviation of 𝑍(

∏
𝑌 ) is better than 𝑍(

∏
𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖+1])+(𝑛− 𝑗+1)(𝐴𝑃[𝑗−1][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1]−𝐴𝑃[𝑗][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Figure 9. Swapping nonadjacent job 𝑖 and job 𝑗 when one job is on-time
and the other is tardy.

Lemma 4b. In a given schedule
∏

𝑋 , for any two nonadjacent jobs (job 𝑖 and job 𝑗) are
both tardy, then the total deviation of 𝑍(

∏
𝑌 ) is better than 𝑍(

∏
𝑋) only when

(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 9

Figure 10. Swapping nonadjacent job 𝑖 and job 𝑗 when both of them are tardy.

(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).

Lemma 5. In a given schedule
∏

𝑋 , for any two jobs (job 𝑖 and job 𝑗) are early and
tardy, then the total deviation of 𝑍(

∏
𝑌 ) is better than 𝑍(

∏
𝑋) only when

Figure 11. Swapping nonadjacent job 𝑖 and job 𝑗 when one job is early
and the other is tardy.

4. IMPLEMENTATION OF GENETIC ALGORITHMWITHDOMINANCE
PROPERTIES. Dominance properties for the single machine problem have been devel-
oped in this study and these DPs can work alone as a heuristic or to be integrated
with meta-heuristic. According to our preliminary experiments, the stand alone heuristic
adopting DPs explores the solution space effectively in an efficient way. However, this
stand alone heuristic will be stuck in local optimal easily. This paper makes an attempt to
combine the dominance properties with a meta-heuristic, i.e., Genetic Algorithm. There-
fore, a two-phase hybrid algorithm is proposed and it is named genetic algorithm with
dominance properties, i.e., GADP in short. The detailed procedures of GADP are ex-
plained at section 4.1 and section 4.2, respectively.

4.1. The First Phase of GADP. The first phase is to establish the initial solutions
by employing dominance properties developed above. Given a set of random generated
solutions, a set of initial solutions can be derived by applying these DPs to each se-
quence. Since the scheduling problem is a sequential problem, path-representation will
be adopted as an encoding technique. The following figure shows an eight-job example
for this encoding representation. This encoding method is applied in phase 2 as well.
After the random solution is generated, the heuristic applies a general pair-wise inter-
change (GPI) which is a neighborhood search method to exploit the solution space. The
GPI procedure will pick two jobs randomly to swap and then evaluate the performance of
the new schedule based on the dominance properties. If the new solution is better than
the original one, the new one will replace the original solution. The process will continue
until all jobs have been interchanged.
For a given sequence, an initial solution is obtained by applying GPI and DPs. Therefore,
a set of initial solutions can be generated by using the heuristic iteratively in the first
phase. The time-complexity of the first phase is 𝑂(𝑛2) and the set of solutions generated
are employed in the second phase by the genetic algorithm. The pseudo code of the main
procedure and the first phase are demonstrated as the following:



10 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

Notation:

∙ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: A set of solutions represent the chromosomes in genetic algorithm.
∙ 𝑛: The population size.

Algorithm 1: Main ()

1: initializePopulationSize()
2: for 𝑖 = 1 to 𝑛 do
3: GPI(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑖])
4: end for
5: Genetic Algorithm() //The second phase

Algorithm 2: GPI()

1: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = generateRandomSolution()
2: for 𝑖 = 1 to 𝑛 do
3: for 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 1 to 3 do
4: for 𝑝𝑜𝑠 = 0 to 𝑛− 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 do
5: dominanceProperty(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑝𝑜𝑠, 𝑝𝑜𝑠+ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡)
6: end for
7: if 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 has not been changed then
8: break;
9: end if
10: end for
11: return 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
12: end for

4.2. The Second Phase of GADP. In the second phase, GA will be applied to further
improve the solution quality. The pseudo code of the genetic algorithm are listed as
follows:
Algorithm 3: Genetic Algorithm())

1: Adopt the solutions from Phase 1()
2: counter ← 0
3: while counter < maxGeneration do
4: Evaluate Fitness()
5: Elitism()
6: Selection()
7: Crossover()
8: Mutation()
9: counter ← counter+1
10: end while

The genetic operators applied in the Genetic Algorithm including the selection, crossover,
and mutation operator will be explained in the following section.

4.2.1. Fitness and Selection Operator. Because the single machine scheduling with setups
is a single objective problem, the objective value of each chromosome can be used as fitness
directly. Then, the binary tournament selection is employed in the selection operation.
The criterion to select better offspring is depended on their own fitness; the individual
whose fitness is better will be selected. As a result, the selection procedure selects better
chromosomes into the mating pool.

4.2.2. Crossover Operator. The crossover procedure is randomly selecting two chromo-
somes to mate. There are several crossover methods for combinatorial problem. This



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 11

study employed the two-point crossover and the procedures of the two-point crossover are
listed as follows:

1. Select two chromosomes and named it as parent 1 and parent 2.
2. Determine the two cut points, suppose they are at position 𝑖 and 𝑗, copy the genes

which outside the range from 𝑖 to 𝑗 to the offspring in the same position.
3. Copy the remaining genes which inside the range of parent1 in the order of relative

gene position of parent 2.

Figure 12. Two-point crossover

4.2.3. Mutation. The purpose of mutation is to generate a new chromosome with a better
fitness by changing the gene position of the current chromosome. Swap mutation is applied
here because it is easy to implement by setting two positions and exchanging the two values
of these positions.

5. EXPERIMENTAL RESULTS. The bench mark test will base on the instances
designed by [30] and the job size of each instance includes 10, 15, 20, and 25. The range
of the processing time contains low, median, and high, which are based on the genera-
tion functions of Uniform(10, 60), Uniform(10, 110), and Uniform(10, 160), accordingly.
Because each combination has 15 similar instances, the total number of instances is 180
(4*3*15) and each instance is replicated 30 times for each algorithm tested. This study
utilized the design-of-experiment (DOE) to select the best parameter setting of GA. Ta-
ble 2 shows the result generated by the DOE experiments. The proposed algorithm is
to improve the effectiveness of the GA approach. Therefore, GADP is compared with
the original GA and DP approaches to demonstrate its effectiveness. These experimental
results are shown at section 5.1.

Sourd [30] only provided the instances of 10, 15, 20, and 25 jobs and these instances
might not be sufficient to demonstrate the complexity of the problem. Consequently, we
apply similar concept by Sourd [30] and generate large size of problems, which include
50, 100, 150, and 200 jobs. The distribution of these instances is also based on the
processing time range that includes low, median, and high. Therefore, there are totally
180 combinations in these large size instances as well.

Table 1. GA parameters setting

Factor Default
Crossover Rate 06
Mutation Rate 0.5
Population Size 100
Generations 1000



12 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

5.1. The Small Size Problems. The stopping criterion of SGA and GADP is to ex-
amine 100,000 solutions. Because the first phase is used to construct initial solutions for
GA, there are totally 100 initial solutions generated at the first phase. To compare the
performance of these algorithms, the research employs the average relative error ratio,
which is ((𝑎𝑣𝑔𝑂𝑏𝑗 − 𝑂𝑝𝑡)/𝑂𝑝𝑡) ∗ 100 where the 𝑎𝑣𝑔𝑂𝑏𝑗 is the average objective value
and the 𝑂𝑝𝑡 solution is obtained from literature. Table 3 is the empirical results of this
experiment, which includes some selected instances. Because there are 15 combinations
of each instance type, they are denoted as k in table 3. Owing to there are 180 com-
binations, it is not possible to demonstrate all the empirical results. This study selects
partial results of k from 1 to 3. The complete results of these tests are available on our
website1. Finally, the optimal solution is available by [30] who applied Branch-and-Bound
algorithm to derive the solution.
Then, Table 3 shows the average relative error ratio of all the 180 instances for each

algorithm tested. Table 2 and Table 3 shows GADP is totally superior to SGA for all
instances in average. Moreover, the total relative average error ratio of SGA and GADP
are 12.748% and 7.917% respectively. There is only one exception that SGA is better
than GADP. The instance is job size 10 and the type is high at Table 3.
An ANOVA test is applied to show if there is a significant difference among these

three algorithms. Table 4 shows the Duncan grouping result that examines the pair-wise
relationship among these three algorithms tested. The Duncan test shows that GADP is
the best and SGA is the second. DP only performs the worst.
To show the convergence process for these algorithms, i.e., DP, SGA and GADP, in-

stance of job 25 with high variation of job processing time is applied as a demonstration.
It shows that GADP is significantly outperform DP and SGA because these three algo-
rithms do not share the same alphabet in Duncan test. As a result, GADP performs the
best in solving the single machine scheduling problem with setup cost.

5.2. The Large Size Problems. This study designs larger size instances for this sched-
uling problem and these experimental results are shown in the section. The parameter
settings of genetic algorithm are the same as in section 5.1. The testing instances and the
complete result table are available on our website. Table 5 represents the empirical result
of SGA and GADP under different distributions of processing times and problem sizes.
According to the results in Table 6, the average performance of GADP is better than
SGA and the differences are very obvious. Finally, Table 6 show the result of Duncan test
between the two algorithms and GADP is statistically better than SGA.
Finally, although it is not possible to obtain optimal solutions for large size of instances in
a limited time, this study ran the GADP for 1,000,000 solutions for each instance to derive
a near-optimal solutions. Then, we ran SGA and GADP for 100,000 solutions to derive the
current best objective value for each instance. The average relative error ratio((𝑎𝑣𝑔𝑂𝑏𝑗−
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑖𝑛)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑖𝑛) ∗ 100 is applied to distinguish the performance of SGA and
GADP. The result is shown at Table 7. We can find out that GADP outperforms the
other two methods for all different instances.

6. DISCUSSIONS AND CONCLUSIONS. This research studied the single machine
scheduling problem with sequence dependent setup times and the objective is to minimize
the total tardiness. This is a very important problem that is encountered in a wide variety
of practical situations. A set of dominance properties are developed in this research to
determine the relationship between a pair of jobs. The time complexity of the dominance
properties is in 𝑂(𝑛2) and it is very efficient when combined with the GA. To speed

1http://mail.nhu.edu.tw/˜shihhsin/download/



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 13

Table 2. The experimental results for three different algorithms compared
(partial instance

DP SGA GADP
Type Size k Opt Min Mean Max Min Mean Max Min Mean Max
Low 10

10
10
15
15
15
20
20
20
25
25
25

1
2
3
1
2
3
1
2
3
1
2
3

423
378
384
801
794
753
1293
1306
1299
1830
1828
1903

433
392
387
950
916
887
1683
1723
1752
2694
2758
2900

442.2
405.6
391.73
990.9
983.67
928.2
1835.1
1828.6
1838.2
2879
2979.2
3034.1

462
421
398
1032
1011
975
1942
1894
1910
2997
3150
3145

423
378
384
805
794
753
1312
1320
1363
1968
1874
1996

436.42
378.97
393.13
852.45
856.48
798.39
1391.3
1427
1444.6
2076.7
2051.3
2154.4

467
393
410
914
934
870
1478
1528
1607
2210
2252
2380

423
378
384
801
794
753
1310
1312
1312
1900
1864
1990

423.67
378
387.07
837.83
821.63
775.33
1375.8
1365.7
1387.5
1990.6
2005.5
2088.4

443
378
392
876
854
837
1458
1425
1490
2085
2173
2187

Med 10
10
10
15
15
15
20
20
20
25
25
25

1
2
3
1
2
3
1
2
3
1
2
3

372
510
495
982
949
837
1732
1499
1484
2149
2293
2271

375
513
495
1155
1124
953
2308
2194
2020
3381
3506
3504

394.77
539
518.17
1246
1261.2
1061.1
2551.2
2356.9
2192.7
3687.6
3865.7
3847

430
571
551
1347
1364
1140
2690
2504
2341
3872
4119
4045

372
510
495
982
949
837
1785
1599
1558
2436
2451
2460

398.19
518.55
512.61
1073.5
1064.7
907.7
1947.4
1749.2
1697.2
2747.3
2818.7
2826

462
534
542
1219
1249
1048
2154
1985
1946
3094
3293
3225

372
510
495
982
949
837
1801
1539
1496
2358
2450
2403

389
515.23
502.23
1034
1023
862.1
1883.5
1684.3
1614.4
2548.8
2656.2
2632.8

406
529
526
1125
1140
921
2009
1864
1801
2742
2845
2884

High 10
10
10
15
15
15
20
20
20
25
25
25

1
2
3
1
2
3
1
2
3
1
2
3

710
606
508
990
1346
1012
1664
1505
1654
2493
2772
2537

740
606
508
1212
1700
1142
2296
2133
2288
3849
4415
4124

745.07
644.7
517.7
1351.5
1793.6
1317.3
2651.1
2518.4
2676.7
4211.3
4887.4
4640.9

764
758
551
1446
1905
1466
2924
2780
2953
4485
5256
5134

710
606
508
996
1346
1012
1792
1711
1805
2583
2901
2845

720.32
643.35
519.42
1145.5
1440.2
1220.1
2087.6
1998.2
2111.9
3037.5
3499
3376.4

728
753
580
1448
1588
1475
2380
2371
2376
3513
4045
3894

710
606
508
993
1350
1012
1760
1569
1740
2649
2994
2742

722.27
606
512.8
1099.1
1438.2
1086.7
1941.3
1785.5
1965.9
2892.4
3303.8
3134.2

728
606
523
1192
1611
1156
2227
2065
2259
3094
3666
3528

up the convergence of GA, these dominance properties are further integrated with a
genetic algorithm which is named GADP in short. From the experimental results, these
dominance properties are able to generate a set of very good initial solutions and the GA
procedures can further evolve these solutions into near-optimal solutions. The solution
quality of GADP is much better than that of a simple GA. It can be concluded that these
dominance properties are very effective in generating good quality of initial solutions.
Therefore, GADP is more efficient and effective when compared with a simple GA. For a



14 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

Table 3. The average relative error ratio for the three algorithms (%)

Type Size DP SGA GADP
Low 10 4.32 2.07 0.3117

15 24.345 6.177 3.217
20 43.821 10.636 7.055
25 59.314 13.67 9.74

Median 10 4.941 2.983 1.007
15 30.078 10.367 5.075
20 50.933 16.083 10.281
25 70.427 22.553 15.5

High 10 7.46 3.408 0.662
15 33.975 13.73 7.067
20 58.63 23.47 14.635
25 78.99 27.83 20.454

Table 4. The Duncan grouping result for the three algorithms in mean

Duncan Grouping Mean N Method
A 1961.921 5400 DP
B 1513.179 5400 SGA
C 1439.981 5400 GADP

set of large instances such as 150, 200 or even larger job sizes, GADP still performs the
best among others.



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 15

Table 5. The experimental results for the three different algorithms (par-
tial instance

Type Size k
SGA Obj Value GADP Obj Value

Min Mean Max Min Mean Max
1 8229 8794.6 9424 7397 8211.2 8767

50 2 7753 8339.1 8850 7489 8012.2 8444
3 7750 8405 9037 7666 8106.8 8561
1 32914 34183 35711 30268 31168 32171

100 2 32665 34477 35942 30062 31361 32694
Low 3 32776 34446 36296 30452 31392 32278

1 78688 81818 85833 67865 70177 71874
150 2 76316 80938 83605 67999 69723 71263

3 79011 81352 85989 68478 69910 72001
1 145254 150104 154839 120452 122850 125300

200 2 143730 149496 154344 119157 122564 124625
3 142487 148548 157893 120217 122368 125074
1 9391 10491 11957 9017 9814.5 10399

50 2 9308 10543 11504 8938 9852.1 10558
3 9157 10454 11873 8991 9772.9 10741
1 41240 43497 46031 35844 38266 40717

100 2 41955 44270 47300 36176 38408 40083
Med 3 41874 43835 48138 34872 37627 39840

1 97679 102975 111951 79865 83056 85680
150 2 99005 105683 113085 80886 83903 86699

3 97373 103708 110166 81139 83820 86736
1 184194 197482 204554 141130 146198 150477

200 2 182665 194459 200625 142235 145641 148678
3 186634 196829 206540 142708 146056 151177
1 11577 12751 14026 10611 11673 12849

50 2 11289 12572 13540 10179 11841 13886
3 12178 13780 15899 11125 12371 13703
1 48572 52023 56383 41878 44339 47249

100 2 48016 53415 57755 42233 44492 47300
High 3 47989 51751 55985 41059 43745 46483

1 117097 126981 134396 91331 96999 102956
150 2 119629 124796 129865 91850 96628 101090

3 121124 128037 135771 89284 96857 101771
1 227667 240781 254946 162533 168965 175379

200 2 223495 239886 260765 162936 169169 177366
3 228726 243118 270010 161974 170394 177203

Table 6. The Duncan grouping result for the three algorithms in mean

Duncan Grouping Mean N method
A 88585.7 5400 SGA
B 69323.3 5400 GADP

7. REFERENCES.



16 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

Table 7. The performance relative average error ratio SGA and GADP

Type Size k
Current Average

Error Ratio
(%)

Min SGA GADP SGA GADP
1 7397 8794.6 8211.2 18.89 11.01

50 2 7489 8339.1 8012.2 11.35 6.99
3 7666 8405 8106.8 9.64 5.75
1 30268 34183 31168 12.93 2.97

100 2 30003 34477 31361 14.91 4.53
Low 3 30452 34446 31392 13.12 3.09

1 67820 81818 70177 20.64 3.48
150 2 66918 80938 69723 20.95 4.19

3 66043 81352 69910 23.18 5.86
1 120452 150104 122850 24.62 1.99

200 2 116040 149496 122564 28.83 5.62
3 118261 148548 122368 25.61 3.47
1 9017 10491 9814.5 16.35 8.84

50 2 8938 10543 9852.1 17.96 10.23
3 8991 10454 9772.9 16.27 8.70
1 34320 43497 38266 26.74 11.50

100 2 36176 44270 38408 22.37 6.17
Med 3 34872 43835 37627 25.70 7.90

1 77324 102975 83056 33.17 7.41
150 2 80886 105683 83903 30.66 3.73

3 78748 103708 83820 31.70 6.44
1 139254 197482 146198 41.81 4.99

200 2 133589 194459 145641 45.57 9.02
3 141397 196829 146056 39.20 3.29
1 10611 12751 11673 20.17 10.01

50 2 10179 12572 11841 23.51 16.33
3 11125 13780 12371 23.87 11.20
1 40560 52023 44339 28.26 9.32

100 2 42233 53415 44492 26.48 5.35
High 3 41059 51751 43745 26.04 6.54

1 89926 126981 96999 41.21 7.87
150 2 86745 124796 96628 43.87 11.39

3 89284 128037 96857 43.40 8.48
1 161560 240781 168965 49.04 4.58

200 2 155609 239886 169169 54.16 8.71
3 154185 243118 170394 57.68 10.51

1. B. Alidaee, I. Dragan, A note on minimizing the weighted sum of tardy and early
completion penalties in a single machine: a case of small common due date. European
Journal of Operational Research vol., 96, no.3, pp.559-563, 1997.

2. M.H. Al-Haboubi and Shokri Z. Selim, A sequencing problem in the weaving industry,
European Journal of Operational Research Vol.66, no. 1, pp. 65-71, 1993.

3. A. Allahverdi, J.N.D. Gupta, T. Aldowaisan, A review of scheduling research involv-
ing setup consideration, OMEGA, vol. 27, no.2, pp.219-239, 1999.



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 17

4. M. Azizoglu, S. Webster, Scheduling job families about an unrestricted common due
date on a single machine, International Journal of Production Research, vol.35, no.5,
pp.1321-1330, 1997.

5. U. Bagchi, R. Sullivan, Y-L. Chang, Minimizing mean absolute deviation of comple-
tion times about a common due date, Naval Research Logistics Quarterly vol. 33,
no.2, pp.227-240, 1986.

6. K.R. Baker, G.D. Scudder, Sequencing with earliness and tardiness penalties: a
review. Operations Research vol. 38, no.1, pp.22-36, 1990.

7. P.C. Chang, J.C. Hsieh, and Y.W. Wang, Genetic Algorithms Applied in BOPP Film
Scheduling Problems, Applied Soft Computing, vol. 3, no.2, pp. 139-148, 2003.

8. P.C. Chang, J.C. Hsieh, and Y.W. Wang, Adaptive multi-objective genetic algo-
rithms for scheduling of drilling operation in printed circuit board industry. Applied
Soft Computing, vol. 7, no. 3, pp.800-806, 2007.

9. P.C. Chang, S.H. Chen and K.L. Lin, Two Phase Sub-Population Genetic Algorithm
for Parallel Machine Scheduling problem, Expert Systems with Applications, vol. 29,
no.3, pp.705-712, 2005.

10. P.C. Chang, J.C. Hsieh and C.H. Liu, A Case-Injected Genetic Algorithm for Single
Machine Scheduling Problems with Release Time, International Journal of Produc-
tion Economics, vol. 103, no.2, pp.551-564, 2006.

11. P.C. Chang, H.S. Chen and V. Mani, Parametric Analysis of Bi-criterion Single
Machine Scheduling with A Learning Effect, International Journal of Innovational
Computing Information and Control, vol.4, no.8, pp.2033-2043, 2008.

12. S.H. Chen, P.C. Chang, Qingfu Zhang and C.-B. Wang, A guided Memetic algo-
rithm with probabilistic models, International Journal of Innovational Computing
Information and Control, vol. 5, no.12 (B), 4753-4764, 2009.

13. Z-L. Chen, Scheduling with batch setup times and earliness-tardiness penalties, Eu-
ropean Journal of Operational Research, vol.96, no.3, pp.518-537, 1997.

14. T.C.E. Cheng, Optimal single-machine sequencing and assignment of common due-
dates, Computers and Industrial Engineering, vol.22, no.2, pp.115-120, 1992.

15. B.J. Coleman, A simple model for optimizing the single machine early/tardy problem
with sequence-dependent setups, Production and Operation Management vol. 1, no.2
, pp.225-228, 1992.

16. S. French, Sequencing and scheduling: an introduction to the mathematics of the
job-shop, New York, Wiley, 1982.

17. V. Gordon, J. Proth, and C. Chu, A survey of the state-of-the-art of common due
date assignment and scheduling research, European Journal of Operational Research,
vol.139, no.1, pp.1-25, 2002.

18. N.G. Hall, W. Kubiak, S.P. Sethi, Earliness-tardiness scheduling problems, II: devia-
tion of completion times about a restrictive common due date, Operations Research,
vol.39, no.5, pp.847-856, 1991.

19. N.G. Hall, StateM.E. Posner, Earliness-tardiness scheduling problems, I: weighted
deviation of completion times about a common due date, Operations Research,
vol.39, no.5, pp.836-846, 1991.

20. Y. Hirashima, A Q-learning system for container transfer scheduling based on ship-
ping order at container terminals, International Journal of Innovative Computing,
Information and Control, vol.4, no.3, pp.547-558, 2008.

21. X. Hu, M. Huang and A. Zeng, An intelligent solution system for a vehicle rout-
ing problem in urban distribution, International Journal of Innovative Computing,
Information and Control, vol.3, no.1, pp.189-198, 2007.



18 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

22. F. Jin , J.N.D. Gupta , S. Song, C. Wu , Single machine scheduling with sequence-
dependent family setups to minimize maximum lateness, Journal of the Operational
Research Society, doi:10.1057/jors.2009.63, 2009.

23. J.J. Kanet, Minimizing the average deviation of job completion times about a com-
mon due date, Naval Research Logistics, vol.28, no.4, pp.643-651, 1981.

24. O.I. Kulak, O. Yilmaz, PCB assembly scheduling for collect-and-place machines
using genetic algorithms. International Journal of Production Research, vol. 45, no.
17, pp. 3949-3969, 2007.

25. J.K. Lenstra, A.H.G. Rinnooy placeStateKan, and P. Brucker, Complexity of ma-
chine scheduling problems, Annals of Discrete Mathematics, vol.1, pp.343-362, 1977.

26. Tinghuai Ma, Qiaoqiao Yan, Donghai Guan and Sungyoung Lee, Research on Task
Scheduling Algorithm in Grid Environment, ICIC Express Letters, vol.4, no.1, pp.
1-6, 2010.

27. S. A. Mondal, A.K. Sen, Single machine weighted earliness-tardiness penalty problem
with a common due date, Computers & Operation Research, vol.28, no.7, pp.649-
669, 2001.

28. P. S. Ow, and E.T. Morton, The single machine early/tardy problem, Management
Science, vol.35, no.2, pp.177-191, 1989.

29. G. Rabadi, M. Mollaghasemi, G.C. Anagnostopoulos, A branch-and-bound algo-
rithm for the early/tardy machine scheduling problem with a common due-date and
sequence-dependent setup time, Computers & Operation Research, vol.31, no.10,
pp.1727-1751, 2001.

30. F. Sourd, Earliness-tardiness scheduling with setup considerations, Computers &
Operations Research, vol.32, no.7, pp.1849-1865, 2005.

31. L. H. Su and P.C. Chang, A Heuristic to Minimize A Quadratic Function of Job Late-
ness on A Single Machine, International Journal of Production Economics, vol.55,
no.2, pp.169-175, 1998.

32. L. H. Su and P.C. Chang, Scheduling n jobs on one machine to minimize the max-
imum lateness with a minimum number of tardy jobs, Computers and Industrial
Engineering, vol.40, no.4, pp.349-360, 2001.

33. J. J. Wang, F. Liu and P. He, Rescheduling under Predictive Disruption of WSPT
Schedule for Single Machine Scheduling, ICIC Express Letters, vol.4, no.2, pp.467-
472, 2010.

34. S.D. Wu, R.H. Storer, and P.C. Chang, One Machine Rescheduling Heuristic with
Efficiency and Stability as Criteria, Computers & Operations Research, vol.20, no.1,
pp.1-14, 1993.



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 19

Appendix 1: The detail proofs of dominance properties
The following is the detail proofs of the dominance properties in section 3.

1.1 Dominance Properties of Adjacent Interchange
Lemma 2a. In a given schedule

∏
𝑋 , for any two adjacent jobs (job 𝑖 and job 𝑗) are early

and on-time, then the total deviation of 𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑗 − 1)(𝐴𝑃[𝑗][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑗 − 1)(𝐴𝑃[𝑖][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Proof.
Figure 4 shows this condition and the objective of 𝑍(

∏
𝑋) and 𝑍(

∏
𝑌 ).

∵ 𝐺1 =
𝑏−2∑
𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘]

𝐺2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑖] + (𝑗 − 1)𝐴𝑃[𝑖][𝑗]

𝐺3 = (𝑛− 𝑗)𝐴𝑃[𝑗][𝑗+1] +
𝑛−1∑

𝑘=𝑏+1

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺
′
1 = 𝐺1

𝐺
′
2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑗] + (𝑗 − 1)𝐴𝑃[𝑗][𝑖]

𝐺
′
3 = (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑖+1] +

𝑛−1∑
𝑘=𝑏+1

𝐴𝑃[𝑘][𝑘+1])

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, it means
∏

𝑌 is better than
∏

𝑋 which satisfies
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑗 − 1)(𝐴𝑃[𝑗][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1])≤ (𝑖− 1)(𝐴𝑃[𝑖−1][𝑖])+(𝑗 − 1)(𝐴𝑃[𝑖][𝑗])+
(𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).
So job 𝑖 and job 𝑗 are interchanged.
Lemma 3a. In a given schedule

∏
𝑋 , for any two adjacent jobs (job 𝑖 and job 𝑗) are

on-time and tardy, then the total deviation of𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1])≤ (𝑖− 1)(𝐴𝑃[𝑖−1][𝑖])+(𝑛− 𝑖)(𝐴𝑃[𝑖][𝑗])+
(𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])
Proof.
Figure 5 shows this condition and the objective of 𝑍(

∏
𝑋) and 𝑍(

∏
𝑌 ) .

∵ 𝐺1 =
𝑏−1∑
𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘]

𝐺2 = (𝑛− 𝑖)𝐴𝑃[𝑖][𝑗] + (𝑖− 1)𝐴𝑃[𝑖−1][𝑖]

𝐺3 = (𝑛− 𝑗)𝐴𝑃[𝑗][𝑗+1] +
𝑛−1∑

𝑘=𝑏+2

(𝑛− 𝑘)𝐴𝑃 [𝑘][𝑘+1]

𝐺
′
1 = 𝐺1

𝐺
′
2 = (𝑛− 𝑖)𝐴𝑃[𝑗][𝑖] + (𝑖− 1)𝐴𝑃[𝑖−1][𝑗]



20 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

𝐺
′
3 = (𝑛− 𝑗)𝐴𝑃[𝑖][𝑗+1] +

𝑛−1∑
𝑘=𝑏+2

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, then the following condition hold:

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑖)(𝐴𝑃[𝑖][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).

So job 𝑖 and job 𝑗 are interchanged.
Lemma 4a. In a given schedule

∏
𝑋 , for any two adjacent jobs (job 𝑖 and job 𝑗) are tardy

and tardy, then the total deviation of𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑖][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Proof.
Figure 6 shows this condition and the objective of 𝑍(

∏
𝑋) and 𝑍(

∏
𝑌 ).

∵ 𝐺1 =
𝑏∑

𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +
𝑖−1∑
𝑘=𝑏

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺2 = (𝑛− 𝑖+ 1)𝐴𝑃[𝑖−1][𝑖] + (𝑛− 𝑗 + 1)𝐴𝑃[𝑖][𝑗]

𝐺3 = (𝑛− 𝑗)𝐴𝑃 [𝑗][𝑗+1]

𝑛−1∑
𝑘=𝑗

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺
′
1 = 𝐺1

𝐺
′
2 = (𝑛− 𝑖+ 1)𝐴𝑃[𝑖−1][𝑗] + (𝑛− 𝑗 + 1)𝐴𝑃[𝑗][𝑖]

𝐺
′
3 = (𝑛− 𝑗)𝐴𝑃[𝑖][𝑗+1] +

𝑛−1∑
𝑘=𝑗+1

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, then the following condition hold:

(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑖][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).

So job 𝑖 and job 𝑗 are interchanged.
1.2 Dominance Properties of Non-adjacent Interchange
Lemma 2b. In a given schedule

∏
𝑋 , for any two nonadjacent jobs (job 𝑖 and job 𝑗) are

early and on-time, then the total deviation of𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑗 − 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).

Proof.
Figure 8 shows this condition and the objective of 𝑍(

∏
𝑋) and 𝑍(

∏
𝑌 ) .



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 21

∵ 𝐺1 =
𝑖−1∑
𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘]

𝐺2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑖] + 𝑖∗𝐴𝑃[𝑖][𝑖+1] +

𝑗−1∑
𝑘=𝑖+2

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] + (𝑗 − 1)𝐴𝑃[𝑗−1][𝑗]

𝐺3 =
𝑛−1∑
𝑘=𝑗

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺
′
1 = 𝐺1

𝐺
′
2 = (𝑗 − 1)𝐴𝑃[𝑖−1][𝑗] + 𝑗∗𝐴𝑃[𝑗][𝑖+1] +

𝑖−1∑
𝑘=𝑗+2

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] + (𝑖− 1)𝐴𝑃[𝑗−1][𝑖]

𝐺
′
3 =

𝑛−1∑
𝑘=𝑖

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, then the following condition hold:
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑖)(𝐴𝑃[𝑗][𝑖+1])+(𝑗 − 1)(𝐴𝑃[𝑗−1][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1])≤ (𝑖− 1)(𝐴𝑃[𝑖−1][𝑖])+
(𝑖)(𝐴𝑃[𝑖][𝑖+1])+(𝑗 − 1)(𝐴𝑃[𝑗−1][𝑗])+(𝑛−𝑗)(𝐴𝑃[𝑗][𝑗+1]). So job 𝑖 and job 𝑗 are interchanged.
Lemma 3b. In a given schedule

∏
𝑋 , for any two nonadjacent jobs (job 𝑖 and job 𝑗) are

on-time and tardy, then the total deviation of𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖+1])+(𝑛− 𝑗+1)(𝐴𝑃[𝑗−1][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1]−𝐴𝑃[𝑗][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1])

Proof.
Figure 9 shows this condition and the objective of 𝑍(

∏
𝑋) and 𝑍(

∏
𝑌 ).

∵ 𝐺1 =
𝑖−1∑
𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘]

𝐺2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑖] + (𝑛− 𝑖)𝐴𝑃[𝑖][𝑖+1] +

𝑗−2∑
𝑘=𝑖+2

(𝑛− 𝑘+ 1)𝐴𝑃[𝑘−1][𝑘] + (𝑛− 𝑗 + 1)𝐴𝑃[𝑗−1][𝑗]

𝐺3 =
𝑛−1∑
𝑘=𝑗

(𝑛− 𝑘)𝐴𝑃 [𝑘][𝑘+1]

𝐺
′
1 = 𝐺1

𝐺
′
2 = (𝑗 − 1)𝐴𝑃[𝑖−1][𝑗]+(𝑛− 𝑗)𝐴𝑃[𝑗][𝑖+1]+

𝑖−2∑
𝑘=𝑗+2

(𝑛− 𝑘+1)𝐴𝑃[𝑘−1][𝑘]+(𝑛− 𝑖+1)𝐴𝑃[𝑗−1][𝑖]

𝐺
′
3 =

𝑛−1∑
𝑘=𝑖

(𝑛− 𝑘)𝐴𝑃 [𝑘][𝑘+1]

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, then the following condition hold:



22 PEI-CHANN CHANG, SHIH-SHIN CHEN, TING LIE, AND JULIE YU-CHIH LIU

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖+1])+(𝑛− 𝑗+1)(𝐴𝑃[𝑗−1][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1]−𝐴𝑃[𝑗][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).

So job 𝑖 and job 𝑗 are interchanged.
Lemma 4b. In a given schedule

∏
𝑋 , for any two nonadjacent jobs (job 𝑖 and job 𝑗) are

both tardy, then the total deviation of𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑛− 𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).

Proof.
Figure 10 shows this condition and the objective of 𝑍(

∏
𝑋) and 𝑍(

∏
𝑌 ).

∵ 𝐺1 =
𝑏∑

𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +
𝑖−1∑
𝑘=𝑏

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺2 = (𝑛− 𝑖+ 1)𝐴𝑃[𝑖−1][𝑖] + (𝑛− 𝑖)𝐴𝑃[𝑖][𝑖+1]

+

𝑗−1∑
𝑘=𝑖+2

(𝑛− 𝑘 + 1)𝐴𝑃[𝑘−1][𝑘] + (𝑛− 𝑗 + 1)𝐴𝑃[𝑗−1][𝑗]𝐺3 =
𝑛−1∑
𝑘=𝑗

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

𝐺
′
1 = 𝐺1

𝐺
′
2 = (𝑛− 𝑗 + 1)𝐴𝑃[𝑖−1][𝑗] + (𝑛− 𝑗)𝐴𝑃[𝑗][𝑖+1]

+

𝑗−1∑
𝑘=𝑗+2

(𝑛− 𝑘 + 1)𝐴𝑃[𝑘−1][𝑘] + (𝑛− 𝑖+ 1)𝐴𝑃[𝑗−1][𝑖]𝐺
′
3 =

𝑛−1∑
𝑘=𝑖

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, it means
∏

𝑌 is better than
∏

𝑋 which satisfies
(𝑛 − 𝑖 + 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑛 − 𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑛 − 𝑗)(𝐴𝑃[𝑖][𝑗+1])
≤ (𝑛− 𝑖+ 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑛− 𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).
So job 𝑖 and job 𝑗 are swapped.
Lemma 5. In a given schedule

∏
𝑋 , for any two jobs (job 𝑖 and job 𝑗) are early and tardy,

then the total deviation of𝑍(
∏

𝑌 ) is better than 𝑍(
∏

𝑋) only when

(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗]) + (𝑖)(𝐴𝑃[𝑗][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑖]) + (𝑛− 𝑗)(𝐴𝑃[𝑖][𝑗+1]) ≤
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑖]) + (𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]).

Proof.
Figure 11 shows this condition and the objective of 𝑍(

∏
𝑋) and 𝑍(

∏
𝑌 ).

∵ 𝐺1 =
𝑖−1∑
𝑘=1

(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘]

𝐺2 = (𝑖− 1)𝐴𝑃[𝑖−1][𝑖] + 𝑖∗𝐴𝑃[𝑖][𝑖+1] +
∑𝑏

𝑘=𝑖+2(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +
∑𝑗−1

𝑘=𝑏 (𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

+ (𝑗 − 1)𝐴𝑃[𝑗−1][𝑗]

𝐺3 =
𝑛−1∑
𝑘=𝑗

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]



A GENETIC ALGORITHM WITH DOMINANCE PROPERTY FOR SMS WITH SETUP COSTS 23

𝐺
′
1 = 𝐺1𝐺

′
2 = (𝑗 − 1)𝐴𝑃[𝑖−1][𝑗] + 𝑗∗𝐴𝑃[𝑗][𝑖+1] +

∑𝑏
𝑘=𝑗+2(𝑘 − 1)𝐴𝑃[𝑘−1][𝑘] +

∑𝑗−1
𝑘=𝑏 (𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1] + (𝑖− 1)𝐴𝑃[𝑗−1][𝑖] 𝐺

′
3

=
𝑛−1∑
𝑘=𝑖

(𝑛− 𝑘)𝐴𝑃[𝑘][𝑘+1]

Let X = 𝑍(
∏

𝑌 )− 𝑍(
∏

𝑋) and if X < 0, it means
∏

𝑌 is better than
∏

𝑋 which satisfies
(𝑖− 1)(𝐴𝑃[𝑖−1][𝑗])+(𝑖)(𝐴𝑃[𝑗][𝑖+1])+(𝑛− 𝑗+1)(𝐴𝑃[𝑗−1][𝑖])+(𝑛−𝑗)(𝐴𝑃[𝑖][𝑗+1])≤ (𝑖− 1)(𝐴𝑃[𝑖−1][𝑖])+
(𝑖)(𝐴𝑃[𝑖][𝑖+1]) + (𝑛− 𝑗 + 1)(𝐴𝑃[𝑗−1][𝑗]) + (𝑛− 𝑗)(𝐴𝑃[𝑗][𝑗+1]). Therefore, job 𝑖 and job 𝑗 are
exchanged.


