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Abstract: An Estimation of Distribution Algorithm (EDA), which depends on explicitly

sampling mechanisms based on probabilistic models with information extracted from the

parental solutions to generate new solutions, has constituted one of the major research areas

in the field of evolutionary computation. The fact that no genetic operators are used in

EDAs is a major characteristic differentiating EDAs from other genetic algorithms (GAs).

This advantage, however, could lead to premature convergence of EDAs as the probabilistic

models are no longer generating diversified solutions. In our previous research [1], we have

presented the evidences that EDAs suffer from the drawback of premature convergency,

thus several important guidelines are provided for the design of effective EDAs. In this

paper, we validated one guideline for incorporating other meta-heuristics into the EDAs. An

algorithm named “EA/G-GA” is proposed by selecting a well-known EDA, EA/G, to work

with GAs. The proposed algorithm was tested on the NP-Hard single machine scheduling

problems with the total weighted earliness/tardiness cost in a just-in-time environment.

The experimental results indicated that the EA/G-GA outperforms the compared algorithms

statistically significantly across different stopping criteria and demonstrated the robustness

of the proposed algorithm. Consequently, this paper is of interest and importance in the field

of EDAs.
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1. Introduction

In recent years, Estimation of Distribution Algorithms (EDAs) have received numerous

attention [2–6]. In the procedures of research, explicitly learning and building a probabilistic model

from the parental distribution, and then sampling new solutions according to the probabilistic model [7]

has been a key focus of researchers. In addition, building the probabilistic model is a statistical learning

problem which is a probability estimation in terms of a generalized relative entropy [8]. Sampling from

probabilistic models avoids the disturbance of some of the salient genes represented by the model, which

is contrary to what could occur when genetic operators such as crossover and mutation are applied [9].

The most important characteristic to distinguish between EDAs and Standard Genetic Algorithms (SGA)

is the use of probability learning and sampling from the probabilistic model.

As claimed by Zhang and Muhlenbein [10], EDAs might be a promising method capable of capturing

and manipulating the building blocks of chromosomes and hence have become efficient tools for solving

hard optimization problems. Some well-known EDAs include cGA [3], UMDA [4], GA-EDA [11],

Guided Mutation (EA/G) [6], Model-Based Evolutionary Algorithm (EA) [12], Artificial Chromosomes

with Genetic Algorithms (ACGA) [13], Self-Guided GA [14], and VNS·EDAs [9], etc. For the detailed

review, please refer to [7].

If we lack the prior knowledge of concepts necessary to address problems, EDAs would be regarded

as good techniques at solving hard problems. EDAs also can be used to characterize the search space of

the changing environment [15]. According to Santana et al. [9], however, EDAs may have the overfitting

problem in the search space and the probabilistic models can no longer represent the general information.

In addition, due to premature convergence of EDAs, the probabilistic models can not provide diversified

solutions, which has also resulted in poor performance [1,16]. To conquer the aforementioned difficulties

facing EDAs, our previous paper [1] proposed some important guidelines for designing effective EDAs.

These proposed guidelines are:

1. Gradually increasing diversity among the populations.

2. Using other meta-heuristics algorithms as alternatives to EDAs.

3. Replacing the procedures of sampling new solutions.

4. Incorporating EDAs with other heuristics.

The first guideline proposes to use a diversification technique in EDAs. Since EA/G can converge

to local optimal solutions quickly or diverge altogether, we added this concept to EA/G by using

the adaptive strategy and named the new version EA/G “Adaptive EA/G”. In order to evaluate the

performance of Adaptive EA/G, we compared the original EA/G and the ACGA on the NP-Hard single

machine scheduling problems considering both the earliness and tardiness costs. When three different
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stopping criteria were applied (CPU time was divided into short-term, medium-term and long-term

scheduling), the result indicated that the Adaptive EA/G statistically significantly outperformed the

EA/G and ACGA [1]. It is interesting to see the Adaptive EA/G under different CPU usages has

consistent performances.

In this paper, we illustrate that the second guideline is much more effective in designing EDAs.

The well-known EDA, EA/G, was selected again to work with other meta-heuristic methods. Because

genetic algorithms (GAs) are widely used in the engineering applications, we blended the concept of

GAs with the EA/G for the second guideline. The proposed algorithm is named the “EA/G-GA”, which

is used to solve the NP-Hard single machine scheduling problems concerning the weighted earliness and

tardiness costs.

The rest of the paper is organized as follows. In Section 2, we review the single machine scheduling

problems, related works of alternating EDAs with GAs, and the problem statements. After that, Section 3

discusses how implementation of EA/G alternates with GAs. Section 4 reveals the experimental results

whereas the EA/G, Adaptive EA/G, EA/G-GA, and ACGA are evaluated by using the single machine

scheduling problems. Finally, the conclusions of this paper are drawn in Section 5.

2. Literature Review

We review the single machine scheduling problems in the first sub-section, particularly the objective

of minimizing the earliness/tardiness cost. Since some similar works related to this paper have been

done by other researchers, the relevant results are presented in Section 2.2. Last but not least, we give

the problem definition of the NP-Hard scheduling problems in Section 2.3.

2.1. Surveys of the Earliness/Tardiness Single Machine Scheduling Problems

As a generalization, the single-machine scheduling problem to minimize the total weighted earliness

and tardiness costs is strongly NP-hard [17]. The earlier works on this problem were due to [18–20].

Belouadah et al. [21] dealt with a similar problem with the objective of minimizing the total weighted

completion time. Later on, Alves and Almeida [22] developed various dominance rules to solve the

problem. In [23,24], they presented branch-and-bound algorithms by decomposing the problem into

weighted earliness and weighted tardiness sub-problems. Two lower bound procedures were used for

each sub-problem. The lower bound for the original problem was the sum of the lower bounds for the

two sub-problems. Valente and Alves [24] analyzed the performance of various heuristic procedures,

including dispatching rules, a greedy procedure, and a theory-based decision heuristic.

Several authors have mentioned the earliness/tardiness scheduling problem with equal release dates

and no idle time and proposed both exact and heuristic approaches in their literature to solve the

problem. They presented branch-and-bound algorithms for the exact approaches [25–27]. The lower

bounding procedure of Abdul-Razaq and Potts [25] applied sub-gradient optimization and the dynamic

programming state-space relaxation technique, whereas [26] and [27] used Lagrangian relaxation and

the multiplier adjustment method. Among these heuristics, Morton [28] developed several dispatching

rules and a filtered beam search procedure to solve the problem. Valente and Alves [23] presented an

additional dispatching rule and a greedy procedure. They also considered the use of dominance rules to
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further improve the schedule obtained through the heuristic method. Li [26] presented a neighborhood

search algorithm.

In [29], they developed a new algorithm called the “Electromagnetism-like algorithm” to deal with the

single-machine scheduling problem concerning earliness/tardiness penalties. The electromagnetism-like

algorithm was originally devised by Birbil et al. [30], which can solve continuous problems but need

to utilize the random key method in solving discrete problems like the scheduling problems. Therefore,

the electromagnetism-like algorithm increases the diversity of inferior solutions, whereas the genetic

algorithm operator, i.e., the crossover operator, recombines solutions to construct better performing

algorithms. Experimental results show that the performance of hybrid algorithms is far superior to using

the electromagnetism-like algorithm alone.

2.2. Relative Works of Alternating EDAs with GAs

Since the EDAs may not generate diversified solutions in the long run and cause the problem of

premature convergency, hybridizing with other metaheuristics, the genetic algorithm in particular, is

possibly a good approach to increase diversity among populations. Some researchers have conducted

similar studies in their publications [11–13]. Their key idea is to use the EDA as an alternative to the

genetic algorithms so as to further enhance the quality of the solution by implementing the searching

strategy of intensification using the EDAs and diversification via GAs.

In addition to generating a population of chromosomes by probabilistic models or genetic operators

in a single generation, there are other possible ways that include sampling from a probabilistic model

to obtain a proportional solution and using crossover and mutation operators to generate the rest

of solutions. MGSPGA [31] samples 20% solutions from a probability matrix and the remaining

chromosomes are generated by the genetic operators. Consequently, the goal to create a balance between

intensification and diversification has been achieved. For the future research project, both approaches

mentioned above should be examined because it is still unknown about which approach is better (samples

new solutions entirely or partially).

Finally, choosing not to take a sample of the solution from probabilistic models can be advantageous.

When we look for solutions to sequential problems, the time complexity of the proportional algorithm

is O(n2). It is particularly time-consuming when we handle larger size problems. As a result, it is an

efficient approach when the EDAs alternate with other metaheuristics.

2.3. Problem Statements

In this paper, we tackle a deterministic single machine scheduling problem without release dates in

an attempt to minimize the total sum of earliness and tardiness penalties. A detailed formulation of

the problem is described as follows: A set of n independent jobs {J1, J2, · · · , Jn} has to be scheduled

without preemptions on a single machine that can handle at most one job at a time. It is assumed that

the machine will be continuously available from time zero onwards and unforced machine idle time is

not allowed. Job Jj, j = 1, 2, · · · , n becomes available for the processing at the beginning, requires a

processing time pj and should be completed on its due date dj . For any given schedule, the earliness and
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tardiness of Jj can be defined as Ej = max (0, dj − Cj) and Tj = max (0, Cj − dj) respectively, where

Cj is the completion time of Jj .

The objective is then to find a schedule that minimizes the sum of the earliness and tardiness penalties

of all jobs
∑n

j=1 (αjEj + βjTj) where αj and βj are the earliness and tardiness penalties of job Jj .

Considering the inclusion of both earliness and tardiness costs in the objective function is compatible

with the philosophy of just-in-time production, which emphasizes producing goods only when they are

needed. The early costs may represent the cost of completing a job early, the deterioration cost of

perishable goods or a holding (stock) cost for finished goods. The tardy costs can represent the cost of

rush shipping, lost sales and loss of goodwill. We assume that no unforced machine idle time is allowed

and let the machine idle only when no job is available for processing. This assumption reflects that the

cost of machine idleness is higher than the early cost stemming from completing any job before its due

date in a production setting or the capacity of the machine is limited as compared with its demand so

that the machine must remain in operation all the time. In [20] and [28], they provided some specific

examples of production arrangements with these characteristics. A characteristic of the deterministic

problem is an assumption that the set of jobs is ready to process jobs in the beginning.

3. EA/G-GA: The Framework of the EDAs with Meta-Heuristic

According to our prior research [1], EDAs converge faster whereas GAs evolves slowly because

meta-heuristics can perform global search in the evolutionary progress. However, meta-heuristics might

provide better diversity among populations. Based on these characteristics, we could take advantages

on both sides. We employ the EDAs to characterize the parental solutions and then search around the

current solution space. After that, meta-heuristics might introduce new solutions into the population

to maintain the diversity, which can avoid the premature convergency of EDAs. As an example, we

proposed a hybrid framework combining the well-known EDAs, EA/G and Standard Genetic Algorithm

(SGA). The proposed algorithm is named “EA/G-GA”.

Alternating the EA/G and GAs in the evolutionary progress is a main characteristic of the EA/G-GA.

Once the current generation is done by EA/G, GAs carries out the evolution progress in the next

generation. Through the alternation of the EA/G and GAs, the researchers would expect to reduce

the computing efforts and avoid the premature convergency of EA/G because the diversity has been

improved. The pseudo code of the EA/G-GA is shown as the following.

Algorithm 1: EA/G-GA Main Procedure
Population: The whole population.

Parentset: the set of parent solutions selected from the current population.

t: Current Generation

P (t): Probabilistic matrix at generation t.

1: t← 0

2: Initialize Population and P (t)

3: Evaluate(Population)
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4: while t < generations do
5: Parentset← Select(Population)

6: if t%2 == 0 then
7: P (t+ 1)← modelUpdate(Parentset, P (t))

8: Population← EAG(Parentset,P(t+1))

9: else
10: Population← GAOperators(Parentset).

11: end if
12: Evaluate(Population)

13: t← t+ 1

14: end while

In Step 2, we initialize the population and the probabilistic model P (t) before the evolutionary

progress begins. The detailed definition and the initialization method of the probabilistic model are

discussed in Section 3.1. When the evolutionary progress starts, we select good solutions from the

current population. In principle, any selection method such as proportional selection and tournament

selection can be used for this purpose. For the sake of simplicity, the 2-tournament selection is adopted

in our experiments. It randomly draws two members from Population and selects the fitter one to

become a member in Parentset.

After the selection procedure is done, the while-loop controls the stopping criterion determined by

the maximum number of generations. Step 6 decides what kinds of algorithm can be used in the current

generation t. This research conducted some experiments to obtain this parameter setting in Section 4.1.

In this research, when t can be divided by 2, this generation updates the probabilistic model first

(Step 7) and then executes the EA/G (Step 8). The details of the two steps are shown in Section 3.1

and Section 3.2 respectively. On the other hand, the GAs is run at the next generation of EA/G. The two

algorithms are implemented alternatively. Within this scheme, EA/G-GA keeps the simplicity for the

researchers to solve their own specific problems. The following sub-sections explain the details of the

proposed algorithm.

3.1. Updating the Probabilistic Model

The probability estimation is a generalized relative entropy [8], which measures the strength of the

variable in EDAs. Probability P (t) is of the form:

P (t) =

⎛
⎜⎜⎜⎝

P11(t) · · · P1n(t)
...

. . .
...

Pn1(t) . . . Pnn(t)

⎞
⎟⎟⎟⎠ (1)

where Pij(t) is the probability of job i in position j in a promising solution in the generation

t. P (t) summarizes the global statistical information about promising solutions obtained from the

previous search.

In Step 2 of the EA/G-GA main procedure, each Pij(t) is initialized to be 1
n

, where n is the number of

jobs. This initialization means that all the solutions have the same likelihood to be an optimal solution.
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The reason for such an initialization is that we have no information about the location of promising

solutions. A better initialization procedure can be refer to [5].

Let φij be the number of the solutions in Parentset in which job i is in position j and |Parentset|
be the size of Parentset. Pij(t+ 1) in Line 7 is updated as follows:

Pij(t+ 1) = (1− λ)Pij(t) + λ φij+1

|Parentset|+n
(2)

As in PBIL [32], we update P (t + 1) in an incremental learning way. λ ∈ (0, 1) is the learning rate.

The larger λ is, the more Parentset contributes to P (t+ 1). In the above equation, we use the Laplace

correction
φij+1

|Parentset|+n
, instead of

φij

|Parentset| . The Laplace correction [33–35] can prevent Pij(t+1) from

becoming too small.

As soon as the probabilistic matrix P (t + 1) is built, jobs are assigned onto each position. The

approach of how to utilize the probabilistic model to generate a sequence is illustrated in the next section.

3.2. The Detailed Procedures of EA/G

We use the proportional selection to assign jobs onto each position. Through this proportional

selection [10], it is demonstrated that if the distribution of the new elements matches that of the parent

set, a global optimal solution will be found and a factorized distribution algorithm converges globally.

The assignment sequence for each position is assigned in random order. A specific parameter of EA/G

is β, which determines the proportion of elite genes copied from elite solution directly. The assignment

procedure is determined as follows:

Notation:
S: A set of shuffled sequence determining the sequence of each position to be assigned a job.

Ω: The set of un-arranged jobs.

J : The set of arranged jobs. J is empty in the beginning.

θ: A random probability is drawn from U(0, 1).

i: A selected job by proportional selection

k: The element index of the set S

β: The EA/G parameter controls the proportion of elite genes copied to offspring

Algorithm 2: EA/G Operator

1: S ← shuffled the job number [1 . . . n]

2: J ← Φ

3: EA/G Operator y = EAG(Parentset, P (t+ 1)).

4: Output: y = (y1, . . . , yn).

5: while xi ∈ Parentset do
6: while k �= Φ do
7: Flip a coin with head probability β;

8: if The head turns up then
9: Select a job i satisfies θ ≤ Pik/

∑
i∈Ω P (i, k)

10: J(k)← i
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11: else
12: yi := xi.

13: end if
14: Ω← Ω\i
15: S ← S\k
16: end while
17: end while

From the above EA/G operator, yi is directly copied from the parent xi or randomly sampled from the

probability vector p. The larger β is, the more elements of y are sampled from the probability vector p.

In other words, β, similar to the mutation rate in conventional mutation, controls the similarity between

offspring and the parent, while the parent can be chosen from the best solutions found so far. After the

generation runs the EA/G, the next generation executes the genetic operators which is shown in the next

sub-section.

3.3. GAs Operators

When GAs receive the Parentset, genetic operators including the crossover and mutation will deal

with it. Two chromosomes are randomly selected to mate in the crossover procedure. There are several

crossover methods available for solving the combinatorial problem. The two-point center crossover [36]

is employed in this study with below procedures:

1. Select two chromosomes and name them as parent 1 and parent 2.

2. Determine the two cut points, suppose they are at position i and j, copy the genes which are outside

the range from i to j to the offspring in the same position.

3. Copy the remaining genes which are inside the range of parent 1 in the order of relative gene

position of parent 2.

The pictorial representation of this crossover operator is shown in Figure 1:

Figure 1. Two-point center crossover.

Finally, the purpose of the mutation operator is to generate a new chromosome with a better

fitness by changing the gene position of the current chromosome. We adopt the swap mutation here

because it is easy to implement by setting two positions and exchanging the two values of these positions.
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Summary: In the proposed framework, EA/G and GAs are employed in turn. This approach may

combine the benefits of providing better convergency brought by the EA/G while maintaining better

population diversity by applying the genetic operators. Although EA/G and GAs are used in this

framework, it is not limited to these two algorithms. Other EDAs may have the problem of premature

convergency, which can be improved when they alternate with other meta-heuristics. This section

illustrates the potential implications of the same class of EDAs as well as the meta-heuristic.

In order to validate the performance of the EA/G-GA, we compare it with other algorithms and show

the experimental result for solving the single machine scheduling problems under different stopping

criteria in Section 4.

4. Experiment Results of EA/G-GA for Single Machine Scheduling Problems

We first explain the environment settings and then demonstrate the experiment results including the

problem instances, parameter configurations, and analysis methods. In order to show the performance of

the EA/G-GA, we compare the proposed algorithm with the original version of EA/G [6], ACGA [13],

and Adaptive EA/G [1].

4.1. Settings of the Experiments and the Background of Design-of-Experiment

We analyze all the algorithms by running the instances of single machine scheduling problems with

minimized earliness/tardiness costs and take the just-in-time production environment into consideration.

There are numerous data sets published in the literature [37] for the single machine scheduling problems,

including 20, 30, 40, 50, 60, and 90 jobs. Each data set of 20 jobs up to 50 jobs contains 49 instances

(problems) whereas there are 9 instances in the data set of 60 jobs and 90 jobs. We carry out our

experiments on these total 214 instances. Each algorithm will replicate every instance 30 times.

In order to show the robustness of the algorithms, we set the stopping criteria based on the number of

examined solutions, which are 50,000, 75,000, 100,000, and 125,000 solutions, identical to our previous

research [1]. The four solutions stand for the different implementation environments allowing lower,

medium, high, and higher level of CPU time with the same default parameter settings: the population

size is 100, the crossover rate is 0.9, and mutation rate is 0.5 across all experiments. Moreover, using

50,000 solutions means the algorithms stop at generation 500.

An important parameter in the proposed algorithm determines when to use the EDA operator. To

set this parameter, we validate this setting for EDA and GA combination in the following experiment.

Different combinations for EDA and GA are shown in the following table.

The above experiments are conducted with a different number of generations respectively, i.e., 500,

750, 1000, and 1250. The experimental results are shown in Figure 2, which have clearly indicated that

1:1 is the best among the five combinations. The 1:1 combination consistently performs better than the

others by a different number of generations. In addition, “the higher the ratio of EDA operator, the lower

the solution quality” is another interesting aspect we want to point out.

This result is very consistent with our previous research in [1] where we advocated that the

EDA operator may cause the dramatic loss of diversity and lead to poor solution quality. A

rule of thumb in the problem solving process is to balance the combination of EDA and GA.
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The combination could be problem-dependent and this parameter has to be revalidated for other

applications. The detailed experiment results for this parameter is available at our website

(http://peterchenweb.appspot.com/publications/sourceCodes/Entropy2011/index.htm).

Table 1. The combinations of EDA and GA.

EDA:GA
1:1 The original setting (t % 2)

1:2 GA operator is used for 2/3 occasions and EDA runs for the 1/3

occasions in the total generations.

1:3 GA operator is employed for 75% of total generations and EDA

runs in the remaining 25% of the entire generations.

2:1 EDA operator is run in 2/3 of the number of total generations

and GA runs for the 1/3 occasions in the whole period.

3:1 EDA operator is applied for 3/4 occasions and GA is executed

in the remaining 1/4 generations.

Figure 2. Performance evaluation for different combinations of EDA and GA.

We first explain the parameter used in the proposed algorithm and then introduce the

Design-of-Experiment because the analysis is primarily done by Design-of-Experiment to distinguish

the differences of these algorithms. ANOVA is adopted as the comparison method where the source

indicates factors and combinations of factors in the ANOVA table. In our case, Instance and Method
are factors, DF represents the degree of freedom and SS is the sum of squares. The mean square is

equal to SS divided by DF. If the Pr-value of a factor (source) is less than 0.05, it means that there is

a significant difference in this factor [38]. Because the ANOVA table does not provide the comparisons

between/among the levels, we further conduct the Duncan grouping test to differentiate the performances

of these algorithms.

Duncan Grouping test is used to further distinguish the performance of the levels belonged to the

factor. In Duncan Group test, when the algorithms share the same alphabet, it means they are in the

same group so that there is no difference between/among these algorithms. On the other hand, as
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soon as they are not in the same group (or to share the same alphabet), there is significant difference

between/among them. The detailed explanations of statistics terms are available in [38]. Finally, the

following subsections are the empirical results of solving the single machine scheduling problems.

4.2. The Empirical Results

We compare the proposed algorithms with the EA/G, ACGA, and Adaptive EA/G discussed in other

literature. These algorithms are tested under various stopping criteria where 50000, 75000, 100000,

and 125000 solutions are evaluated respectively. The ANOVA Table 2 to Table 5 implies that these

compared algorithms have strong significance because the P-Value is less than 0.0001. The ANOVA

results show there is difference among the compared algorithms. To distinguish the differences among

the algorithms, a famous statistic method Duncan grouping analysis is used to compare the significance

of these algorithms.

Table 2. ANOVA results at the stopping criterion of 50,000 examined solutions.

Source DF SS Mean Square F Value P Value
instances 213 5.32E+12 24966564338 1.41E+07 <.0001

method 3 990458.8414 330152.9471 186.73 <.0001

instances*method 639 21834746.74 34170.1827 19.33 <.0001

Error 24824 43891753.69 1768.117696

Corrected Total 25679 5.32E+12

Table 3. ANOVA results at the stopping criterion of 75,000 examined solutions.

Source DF SS Mean Square F Value P Value
instances 213 5.31E+12 24941096330 1.64E+07 <.0001

method 3 107158.5288 35719.50961 23.43 <.0001

instances*method 639 2569676.571 4021.403085 2.64 <.0001

Error 24824 37840343.96 1524.345148

Corrected Total 25679 5.31E+12

Table 4. ANOVA results at the stopping criterion of 100,000 examined solutions.

Source DF SS Mean Square F Value P Value
instances 213 5.31E+12 24936063497 1.74E+07 <.0001

method 3 92494.17975 30831.39325 21.5 <.0001

instances*method 639 1350141.22 2112.897058 1.47 <.0001

Error 24824 35594800.28 1433.886573

Corrected Total 25679 5.31E+12

Table 5. ANOVA results at the stopping criterion of 125,000 examined solutions.

Source DF SS Mean Square F Value P Value
instances 213 5.31E+12 24931260598 1.93E+07 <.0001

method 3 63931.9233 21310.6411 16.5 <.0001

instances*method 639 1460446.674 2285.519051 1.77 <.0001

Error 24824 32070591.19 1291.918756

Corrected Total 25679 5.31E+12
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Tables 6–9 present the results of the Duncan post-hoc comparisons. As we have mentioned earlier

in this paper, when the algorithms share the same alphabet, there is no difference between/among the

algorithms in Duncan analysis. On the other hand, if the algorithms do not share the same alphabet, they

are different to each other. Take Table 6 for instance, the four algorithms have different alphabets. We

have known the objective is to minimize the earliness and tardiness cost. The lower the mean value, the

better the algorithm. EA/G-GA is thus the best algorithm when the stopping criterion is set as 50000

examined solutions.

Across all the different stopping criteria (i.e., Tables 6–9), EA/G-GA consistently outperforms others

when we solve the single machine scheduling problems. EA/G-GA is not only the best algorithm but

also the most robust one under different stopping criteria.

Table 6. Duncan grouping at the stopping criterion of 50000 examined solutions.

Duncan Grouping Mean N Methods
A 12826.724 6420 ACGA

B 12814.85 6420 EA/G

C 12812.509 6420 Adaptive EA/G

D 12810.899 6420 EA/G-GA

Table 7. Duncan grouping at the stopping criterion of 75000 examined solutions.

Duncan Grouping Mean N Methods
A 12814.902 6420 ACGA

B 12813.531 6420 EA/G

C 12812.059 6420 Adaptive EA/G

D 12809.391 6420 EA/G-GA

Table 8. Duncan grouping at the stopping criterion of 100000 examined solutions.

Duncan Grouping Mean N Methods
A 12813.66 6420 EA/G

A

A 12813.276 6420 ACGA

B 12811.168 6420 Adaptive EA/G

C 12808.906 6420 EA/G-GA

Table 9. Duncan grouping at the stopping criterion of 125000 examined solutions.

Duncan Grouping Mean N Methods
A 12812.898 6420 EA/G

B 12810.827 6420 Adaptive EA/G

B

B 12810.149 6420 ACGA

C 12808.48 6420 EA/G-GA

Except using 125000 solutions, Adaptive EA/G is better than ACGA through 50000 to 100000

examined solutions (because they share the same alphabet). Adaptive EA/G and ACGA works equally

well when 125000 solutions are used. The reason why the Adaptive EA/G does not outperform ACGA

is that the ACGA keeps better population diversity so that this algorithm has a better chance to find out

a better solution in the longer computational time.

Finally, Table 10 lists the basic statistic results of Adaptive EA/G and EA/G-SGA under different

solution evaluations.
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Table 10. Selected results of Adaptive EA/G and EA/G-SGA employ different examined

solutions in single machine scheduling problems.

Examined Solutions: 50000
Adaptive EA/G EA/G-SGA

Instance Min Avg. Max Min Avg. Max

sks422a 25656 25662.8 25712 25656 25662.1 25704

sks455a 6405 6420.1 6545 6405 6424.8 6545

sks488a 16862 16865.5 16888 16862 16862.9 16888

sks522a 29309 29326.2 29398 29309 29315.5 29396

sks555a 10187 10213.9 10256 10187 10210.7 10299

sks588a 24844 24847.9 24861 24844 24844.3 24853

sks622a 43048 43100.5 43371 43048 43079.9 43244

sks655a 16158 16163.2 16180 16158 16235.2 16721

sks688a 33551 33592 33686 33551 33608.4 33665

sks922a 88842 88872.1 88994 88842 88876.4 89017

sks955a 30582 30647 30804 30582 30649.9 30795

sks988a 81984 81986.4 81991 81984 81989.4 82034

Examined Solutions: 75000
Adaptive EA/G EA/G-SGA

Instance Min Avg. Max Min Avg. Max

sks422a 25656 25659.7 25697 25656 25661.9 25704

sks455a 6405 6425.4 6545 6405 6424.8 6545

sks488a 16862 16862.9 16888 16862 16862.9 16888

sks522a 29309 29323.1 29398 29309 29312.6 29396

sks555a 10187 10224.2 10299 10187 10210.5 10299

sks588a 24844 24847.9 24861 24844 24844 24844

sks622a 43048 43078.7 43380 43048 43079.9 43244

sks655a 16158 16192.8 16616 16158 16234 16721

sks688a 33551 33624.4 33686 33551 33608.4 33665

sks922a 88841 88878.5 89100 88842 88869.4 89005

sks955a 30582 30674.8 31394 30582 30642.7 30785

sks988a 81984 81985.3 81989 81984 81985.7 82033

Examined Solutions: 100000
Adaptive EA/G EA/G-SGA

Instance Min Avg. Max Min Avg. Max

sks422a 25656 25665.1 25697 25656 25661.9 25704

sks455a 6405 6428.4 6545 6405 6424.8 6545

sks488a 16862 16863.7 16888 16862 16862.9 16888

sks522a 29309 29326.7 29398 29309 29312.5 29396

sks555a 10187 10219.4 10301 10187 10210.5 10299

sks588a 24844 24845.8 24853 24844 24844 24844

sks622a 43048 43081 43273 43048 43079.9 43244

sks655a 16158 16208.1 16640 16158 16234 16721

sks688a 33551 33610 33686 33551 33608.4 33665

sks922a 88842 88871.6 89005 88842 88869.4 89005

sks955a 30582 30639.8 30800 30582 30642.4 30785

sks988a 81984 81985.2 81989 81984 81985.6 82033
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Table 10. Cont.
Examined Solutions: 125000

Adaptive EA/G EA/G-SGA

Instance Min Avg. Max Min Avg. Max

sks422a 25656 25669.4 25793 25656 25661.9 25704

sks455a 6405 6415.7 6545 6405 6424.8 6545

sks488a 16862 16863.7 16888 16862 16862.9 16888

sks522a 29309 29326.2 29398 29309 29312.3 29396

sks555a 10187 10223.3 10351 10187 10209.9 10299

sks588a 24844 24849.8 24870 24844 24844 24844

sks622a 43048 43078.6 43244 43048 43079.9 43244

sks655a 16158 16192.8 16640 16158 16229 16640

sks688a 33551 33580.7 33686 33551 33608.4 33665

sks922a 88841 88858.7 88956 88842 88869.4 89005

sks955a 30582 30628.4 30740 30582 30641.9 30785

sks988a 81984 81985.3 81989 81984 81985.6 82033

4.3. Discussions

The result indicates that both the performances of EA/G-GA and Adaptive EA/G are better than those

of ACGA and EA/G on a majority of stopping criteria because the former algorithms maintain better

population diversity than the latter ones. Therefore, all algorithms outperform the original EA/G at the

end of generations. In addition, the research outcome also demonstrates that EA/G-GA is significantly

better than Adaptive EA/G because the genetic operators might produce more diversified chromosomes

than the algorithms that merely change the parameters. The implication shows the greater the diversity

of an algorithm, the better it can achieve performance, which is an important direction for researchers to

conduct further studies.

Figure 3. Average Objective values under different stopping criteria.

Two figures provided below support the evidence of the performance representation and they can

display performance changes graphically. For example, in terms of the average objective value plot

(See Figure 3), EA/G-GA performs well by all stopping criteria while the ACGA is greatly improved
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when we employ more examined solutions. The convergence plot (See Figure 4) depicts that EA/G

converges very fast before 150 generations. Other algorithms, nonetheless, gradually enhance the

solution quality through the evolutionary progress. Thus, EA/G does not outperform either the EA/G-GA

or Adaptive EA/G.

Figure 4. Compare the convergency of Adaptive EA/G and EA/G-SGA with

other algorithms.

5. Conclusions

The feature of EDAs is to characterize the search space and then to sample new solutions from the

probabilistic models. This feature has the benefit of not disrupting good gene structures; however, it

causes the premature convergency of EDAs so that EDAs no longer generate diversified solutions. Even

when we spend more computational efforts, EDAs can not improve the solution quality as indicated by

our prior research [1]. Consequently, this paper utilizes an important guideline in [1], which hybridizes

the EDAs with other meta-heuristics techniques. The advantage of the hybrid framework is to let EDAs

gain more population diversity via the meta-heuristic. We use one of the famous EDAs, EA/G, to

cooperate with GAs. The proposed algorithm is named “EA/G-GA”, which is used to solve the NP-Hard

single machine scheduling problems.

Through the extensive experiments, we have compared EA/G-GA with some algorithms such as the

ACGA, Adaptive EA/G, and EA/G described in other literature. In terms of statistical significance,

EA/G-GA is found to have better performance than other algorithms by different stopping criteria. The

results indicate that the EA/G-GA is not only superior to other algorithms but also proves to be a robust

algorithm when different stopping criteria are applied (i.e., various CPU times). When we compare the

differences between the EA/G-GA and Adaptive EA/G, the former algorithm is much more powerful

than the latter one. It is meaningful that meta-heuristics provide more diversified solutions than we just

change the parameters of an algorithm, which is a very important implication for EDAs researchers.
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Consequently, researchers could incorporate EDAs with other meta-heuristics in solving hard problems

if they want to increase the population diversity to obtain better solution quality.

Finally, although we decide to alternate the EA/G with GAs in this research, there is no limitation

on the selection of algorithms. For the future research, researchers may test different EDAs and

meta-heuristics to solve various problems.
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