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In this paper we develop a Self-guided Genetic Algorithm (Self-guided GA), which belongs to the

category of Estimation of Distribution Algorithms (EDAs). Most EDAs explicitly use the probabilistic

model to sample new solutions without using traditional genetic operators. EDAs make good use of the

global statistical information collected from previous searches but they do not efficiently use the

location information about individual solutions. It is recently realized that global statistical information

and location information should complement each other during the evolution process. In view of this,

we design the Self-guided GA based on a novel strategy to combine these two kinds of information. The

Self-guided GA does not sample new solutions from the probabilistic model. Instead, it estimates the

quality of a candidate offspring based on the probabilistic model used in its crossover and mutation

operations. In such a way, the mutation and crossover operations are able to generate fitter solutions,

thus improving the performance of the algorithm. We tested the proposed algorithm by applying it to

deal with the NP-complete flowshop scheduling problem to minimize the makespan. The experimental

results show that the Self-guided GA is very promising. We also demonstrate that the Self-guided GA

can be easily extended to treat other intractable combinatorial problems.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Estimation of Distribution Algorithms (EDAs) are a major
evolutionary computing paradigm [1–4]. EDAs explicitly build a
probabilistic model of promising solutions based on the informa-
tion extracted from previous searches. They generate new solu-
tions by sampling from the probabilistic model thus built. EDAs
provide a systematic way of using global statistical information to
guide the search. Solutions sampled by EDAs are more likely to be
in a promising area characterized by the probabilistic model.
However, EDAs alone do not make good use of the information
about the location of individual solutions because the location
information is not directly used to guide the search for the
optimal solution [5]. Recently some attempts have been made
to combine EDAs with the traditional crossover and mutation
operators [5–7] with a view to complementing location informa-
tion and global statistical information during the evolution
process. The idea of using the location information about
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individual solutions to enhance EDAs is supported by the prox-
imate optimality principle, the underlying assumption in modern
heuristics.

This principle assumes that good solutions have similar
structures or substructures [8]. This assumption is valid in many
real-world applications [9]. For example, the percentage of
common edges in any two locally optimal solutions for a traveling
salesman problem obtained by the Lin–Kernighan method is
about 85% on average [10]. Experimental results reported in [6]
also confirmed that this assumption holds for a single-machine
scheduling problem. This principle suggests that the location
information about good solutions should not be ignored in the
design of an efficient search method.

In this paper we propose a Self-guided Genetic Algorithm
(Self-guided GA), which is based on a novel method to combine
global statistical information with the location information about
individual solutions to deal with intractable combinatorial opti-
mization problems. In our proposed algorithm, we use global
statistical information to guide the crossover and mutation
operators, instead of directly using it to sample new solutions.
More specifically, we employ an approximate probabilistic model
to estimate the quality of candidate solutions and to enable the
crossover and mutation operators to generate more promising
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solutions. Although the probabilistic model has been utilized to
predict the chromosome fitness [8,11–14] or Kacem et al. [15]
proposed the fuzzy logic to guide the weights in the multi-
objective problems, they were not used in the same way to guide
the genetic operators.

NP-complete combinatorial optimization problems occur in
many real-world applications. It is generally believed that there is
no polynomial-time algorithm for finding the best solutions to
these problems. For this reason, heuristics including evolutionary
algorithms are widely used to find reasonably good solutions to
NP-complete problems. Permutation flowshop scheduling pro-
blem (PFSP) was studied in this paper and PFSP is one of the best
known NP-complete problems. Excellent reviews on this problem
can be found in [16,17]. Several evolutionary algorithms have
been proposed to deal with this problem [18–22]. In this paper
we apply the Self-guided GA to treat this problem as a way to
illustrate how the algorithm works.

The rest of the paper is organized as follows: Section 2
introduces the permutation flowshop scheduling problem and
EDAs. Section 3 provides detailed explanation of the Self-guided
GA. Section 4 presents experimental results on the performance of
the proposed algorithm in treating the permutation flowshop
scheduling problem to minimize the makespan. Section 5 con-
cludes the paper.
2. Literature review and problem definition

Section 2.1 presents the definition of the permutation flow-
shop problem. Section 2.2 briefly reviews the literature on flow-
shop scheduling. While the Self-guided GA belongs to the
category of EDAs, it is very different from other EDA approaches.
In order to highlight the differences between our work and
previous EDA research, we review EDAs in Section 2.3 and point
out the differences between our proposed algorithm and
other EDAs.

2.1. Problem definition of flowshop scheduling

Flowshops provide a convenient means to model serial man-
ufacturing processes. The flowshop is a processing facility that
consists of several machines on which jobs are processed in a
sequential manner. In the permutation flowshop problem (PFSP),
all the jobs follow the same processing order on each of the
machines and every jobs are independent to each other.

The PFSP to minimize the makespan can be defined as follows.
Suppose there are n jobs and m machines. Let pði,jÞ,

1r irn, 1r jrmbe the processing time of job i on machine j

and p¼ ðp1, . . . ,pnÞ be a job permutation (i.e., processing order of
the jobs). Then the completion times Cðpi,jÞ are calculated as
follows:

Cðp1,1Þ ¼ pðp1,1Þ, ð1Þ

Cðpi,1Þ ¼ Cðpi�1,1Þþpðpi,1Þ for i¼ 2, . . . ,n, ð2Þ

Cðp1,jÞ ¼ Cðp1,j�1Þþpðp1,jÞ for j¼ 2, . . . ,m, ð3Þ

Cðpi,jÞ ¼maxfCðpi�1,jÞ,Cðpi,j�1Þgþpðpi,jÞ

for i¼ 2, . . . ,n; j¼ 2, . . . ,m: ð4Þ

The makespan is

CmaxðpÞ ¼ Cðpn,mÞ: ð5Þ

The objective is to find a permutation pn that minimizes
CmaxðpÞ.
2.2. Literature review of flowshop scheduling

Flowshop scheduling is one of the most extensively studied
problems in the area of scheduling. Ref. [23] summarized the
assumptions for the PFSP and presented results on some solvable
cases. Since most variants of the PFSP are NP-complete, research
on the PFSP has been focused on developing effective heuristics.

Ref. [16] provided a review and a classification of the heuristics
for the PFSP. Ref. [17] presented a comprehensive survey of the
major results on this problem over the period from 1954 to 2004.
The survey covered exact methods and heuristic methods (includ-
ing evolutionary algorithms). They also provided a good reference
for the PFSP with the objective of minimizing the makespan,
denoted as n=m=p=Cmax. Ref. [24] provided a comprehensive
review and evaluation of the heuristics for the PFSP. It is clear
that heuristics have been a major methodology to deal with the
PFSP. The reader may refer to [24] for a detailed review of
metaheuristics, including tabu search, simulated annealing,
genetic algorithms, iterated local search, and hybrid techniques,
for tackling various flowshop scheduling problems.

As regards research on using EDAs, [20] employed ACGA
(artificial chromosomes embedded in genetic algorithm), which
is a hybrid framework of EDAs and GAs, to tackle the PFSP to
minimize the makespan. Their results show that ACGA performs
better than GAs and GADP (genetic algorithm with dominance
properties) [25]. In [21], they incorporated the order information
about each job into the probabilistic model to solve the PFSP to
minimize the total flowtime. They also used a variable neighbor-
hood search in the algorithm as an improvement procedure. Their
approach outperformed all the other algorithms in their
comparison study.

2.3. Estimation of Distribution Algorithms

EDAs also called evolutionary algorithms with probabilistic
models (i.e., EAPMs) or probabilistic model-building genetic
algorithms (PMBGAs) [4] is a principled alternative to traditional
evolutionary algorithms. EDAs do not use crossover or mutation.
Instead, they explicitly extract global statistical information from
the previous search and build a posterior probabilistic model of
promising solutions, from which new solutions are sampled.

Population-based incremental learning (PBIL) [26,27], Univari-
ate Marginal Distribution Algorithm (UMDA) [3], and compact
genetic algorithm (cGA) [2] may be the simplest versions of EDAs.
These algorithms do not consider variable interactions in model-
ing. Theoretical studies have shown that these EDAs are unable to
solve some hard problems with complicated variable linkages
[28]. Much effort has been made to improve these simple EDAs.
The improvements could be classified into three categories:
�
 Use of high order variable interactions in probabilistic models.
Examples are combined optimizers with the mutual informa-
tion tree (COMIT) [29], dependency-trees [30], and the Baye-
sian optimization algorithm (BOA) [31]. Although some
promising results have been reported, [5] showed that models
with high order variable interactions do not necessarily out-
perform simple models in dealing with some real-world hard
problems because these complicated models can only consider
a very tiny percentage of variable interactions in a hard
problem.

�
 Combination of EDAs with traditional evolutionary algorithms.

Such combinations aim at taking advantage of both EDAs and
other EAs. For example, in EDA-GA in [7], some solutions are
sampled from the probabilistic model and the others are
produced by crossover and mutation. In [6], artificial chromo-
somes are generated by an EDA and then mixed with generic
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chromosomes. In guided mutation [5], part of a new solution is
copied from its parent and the rest is sampled from a
probabilistic model.

�
 Hybridization with local search. Encouraged by the success of

combining traditional EAs and local search, many attempts
have been made to enhance the performance of EDAs by local
search. For example, cGA with the Lin–Kernighan local search
has been used to deal with large-scale traveling salesman
problems [1]. EA/G with a simple local search heuristics [5] has
been proposed for the maximum clique problem. An EDA with
local search in [32] has been designed for the nurse rostering
problem.

Our proposed algorithm falls into the second category. The
proposed approach works better than other existing ones. That is
because the proposed approach will evaluate the fitness predictor
before applying cross-over or mutation operator. Thus, redundant or
unnecessary moves can be prevented.The difference between our
algorithm and previous work in this category is that the probabilistic
model is not a source for generating new solutions, but acts as a
fitness predictor for guiding the crossover and mutation operators to
generate fitter solutions. Although the probabilistic model has been
employed to serve as a fitness predictor before (e.g. [8,11–14]), no
prior approaches used the probabilistic model in the same way as
that used in our proposed algorithm.
3. Algorithm

The Self-guided GA uses the probabilistic model to guide its
crossover and mutation operators. The probabilistic model is used
to estimate the quality of candidate solutions generated by the
traditional crossover and mutation operators. Those with esti-
mated higher quality will be allowed to enter the next generation
for further evolution. In such a way, both global statistical
information and location information about individual solutions
(i.e., parent solutions in crossover and mutation) are used to
produce new solutions.

The procedure of the Self-guided GA is described as follows:
Notation:
�
 Population: a set of solutions.

�
 PopSize: the size of Population.

�
 G: the maximum number of generations.

�
 t: generation index.

�
 P(t): probabilistic matrix at generation t.

�
 Parentset: the set of parent solutions selected from the current

population.

�
 Newset: the set of new solutions generated at each generation.

�
 N: the size of Newset.

Algorithm.
1: Initialize Population

2: Evaluate(Population)
3: t’0
4: Initialize P(t)
5: while toG do
6: Parentset¼Select(Population)
7: Pðtþ1Þ’ modelupdate(Parentset, P(t))
8: Generate Newset by using self-guided crossover
9: Mutate every new solution in Newset by using self-

guided mutation
10: Evaluate(Newset)
11: Use the solutions in Newset to replace the N worst

solutions in Population
12: t’tþ1
13: end while
In Line 1 of the algorithm, a set of solutions is generated
randomly or by using a heuristic to form the initial Population,
and the objective function values (i.e., their makespan values) of
all the solutions in Population are computed in Line 2. Line
3 initializes the generation index t. The probability matrix P(t) is
initialized in Line 4. Line 6 selects a number of solutions from
Population to form Parentset. Detailed selection method can be
referred to Section 3.1. Line 7 computes Pðtþ1Þ. In Line 8, we
employ the self-guided crossover operator (the details of this
crossover are given in Section 3.5) to produce N solutions. In Line
9, we mutate each new solution generated in Line 8 by using the
self-guided mutation operator (the details are given later). Line 10
computes the objective function values of all the new solutions. In
Line 11, new solutions replace the N worst solutions in Population

and the Popsize�N best solutions in the old population will enter
the new population. This elitism scheme is widely used in
evolutionary algorithms controlled by an elitism ratio.

In the following we give the details of our proposed algorithm.
3.1. Selection

In principle, any selection method such as proportional selec-
tion and tournament one can be used for this purpose (Line 6). For
the sake of simplicity, we adopted the 2-tournament selection in
our experiments. It randomly draws two members from Popula-

tion and selects the fitter one to become a member in Parentset. As
a result, a number of independent 2-tournament selections are
conducted to generate Parentset.
3.2. Probabilistic model

Probability P(t) is of the form:

PðtÞ ¼

P11ðtÞ � � � P1nðtÞ

^ & ^

Pn1ðtÞ . . . PnnðtÞ

0
B@

1
CA, ð6Þ

where Pij(t) is the probability of job i in position j in a promising
solution. P(t) summarizes the global statistical information about
promising solutions obtained from the previous search.

In Line 4, each Pij(t) is initialized to be 1=n, where n is the total
number of jobs in 9Parentset9. This initialization means that all the
solutions have the same likelihood to be an optimal solution. The
reason for such an initialization is that we have no information
about the location of promising solutions.

Let fij be the number of the solutions in Parentset in which job
i is in position j and 9Parentset9 be the size of Parentset. Pijðtþ1Þ in
Line 7 is updated as follows:

Pijðtþ1Þ ¼ ð1�lÞPijðtÞþl
fijþ1

9Parentset9þn
, ð7Þ

fij=9Parentset9 is the percentage of solutions in which job i is in
position j. It represents knowledge of promising solutions learnt
from the current generation. We use ðfijþ1Þ=ð9Parentset9þnÞ, the
Laplace correction of fij=9Parentset9 in Eq. (7), to prevent Pij from
becoming very small [33–35]. Pij(t) is historical knowledge of
promising solutions. We update Pðtþ1Þ in an incremental manner
which is suggested by [29]. lAð0;1Þ balances the contribution
from historical knowledge with that from the knowledge learnt
from the current generation.



S.-H. Chen et al. / Computers & Operations Research 39 (2012) 1450–1457 1453
3.3. Estimation of solution quality

With Pðtþ1Þ, we define the following function to estimate the
quality of a solution X:

Qtþ1ðXÞ ¼
Yn

k ¼ 1

Pk½k�ðtþ1Þ, ð8Þ

where [k] is the position of job k in X. We would like to make the
following remarks on this function:
�
 Pk½k�ðtþ1Þ is the probability that job k in position [k] is a
promising solution. Therefore Qtþ1ðXÞ can measure how ‘pro-
mising’ X is.

�
 In general, Qtþ1ðXÞ is not an exact probability measure on the

set of all the solutions X sinceX
X

Qtþ1ðXÞa1:

Qtþ1ðXÞ is just an estimation value of the probability that X is
promising. This estimation is much easier to compute and
more effective when compared with other probabilistic mod-
els in the literature [8,11–14]. The trade-off among our
proposed approach and theirs is the computational efforts
needed in evaluating the new chromosome generated. Our
approach is simple and effective and save lots of
computational times.

We use Qtþ1ðXÞ to guide crossover and mutation. In the
following we drop tþ1 in P and Q for simplicity.
3.4. Self-guided mutation operator

Let X be a solution (i.e., a permutation from 1 to n) to be
mutated. Let the position of job k be [k] in X. Suppose we swap the
positions of jobs i and j in X and obtain Y. We can compute the
quality difference in Q caused by this swap as follows:

Dij ¼Q ðYÞ�Q ðXÞ ¼ ½ðPi½j�Pj½i�Þ�ðPi½i�Pj½j�Þ�
Y

ka i,j

Pk½k�: ð9Þ

The larger Dij is, the more likely that Y is better than X.
In our proposed self-guided mutation operator, we randomly

pick some pairs of jobs. This parameter is named TM which sets
the number of swap operations in our proposed algorithm. For
each pair, we compute the differences in Q caused by swapping
the positions of its two jobs in the parent solution X. Then we
conduct the swapping with the largest difference in X to produce
a new solution. Formally, the self-guided mutation operator
works as follows:

Notation:
�
 X: parent solution, i.e., the solution to be mutated.

�
 TM: the number of swappings to be considered.

�
 Y: offspring, i.e., the new solution.
Self-guided mutation:
1.
 Randomly select TM pairs of jobs: fi1,j1g, . . . ,fiTM ,jTMg.

2.
 Compare Di1 j1

, . . . ,DiTM jTM
and find the pair fik,jkg with the

largest D value.

3.
 Swap the positions of jobs ik,jk in X to generate Y.
In the self-guided mutation operator, we need to compare TM

quality differences. In the following we give a simple way to
compare two differences.
�
 Case 1: when i,j,l, and m are four different jobs. Given

Dij�Dlm ¼ ðPi½j�Pj½i�Pl½l�Pm½m��Pi½i�Pj½j�Pl½m�Pm½l�Þ �
Y

ka i,j,l,m

Pk½k�,

Dij4Dlm,

if and only if

Pi½j�Pj½i�Pl½l�Pm½m��Pi½i�Pj½j�Pl½m�Pm½l�40: ð10Þ
�
 Case 2: when i,j, and l are three different jobs. Given

Dij�Dj,l ¼ ðPi½j�Pj½i�Pl½l��Pi½i�Pj½l�Pl½j�Þ �
Y

ka i,j,l

Pk½k�,

Dij4Djl,

if and only if

Pi½j�Pj½i�Pl½l��Pi½i�Pj½l�Pl½j�40: ð11Þ
Based on the above results, we can use (10) and (11) to compare Q

differences in the self-guided mutation operator according to the
largest D value.

3.5. Self-guided crossover operator

In this paper we propose an approach to using the quality
function Q to guide the two-point center crossover [36]. Our
approach can be easily extended to other crossover operators.

The two-point center crossover for permutation vectors from
1 to n works as follows:

Notation:
�
 X ¼ ðx1, . . . ,xnÞ: parent solution 1.

�
 Y ¼ ðy1, . . . ,ynÞ: parent solution 2.

�
 Z ¼ ðz1, . . . ,znÞ: offspring, i.e., the new solution generated by

crossover.

Two-point crossover:
1.
 Randomly select two crossover points KoL.

2.
 Set

zi ¼ xi ð12Þ

for i¼ 1, . . . ,K�1,Lþ1, . . . ,n.

3.
 Reorder xK , . . . ,xL in the order that they appear in permutation Y:

uK ,uKþ1, . . . ,uL:
4.
 Set

zi ¼ ui ð13Þ

for i¼ K , . . . ,L.

Now we give an example to illustrate how this crossover works.
Suppose that

X ¼ ð1 3 2 6 5 4 7 9 8Þ,

Y ¼ ð6 4 5 1 2 3 8 9 7Þ,

and the two crossover points are 3 and 5. Then

z1 ¼ x1 ¼ 1, z2 ¼ x2 ¼ 3, z6 ¼ x6 ¼ 4,
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z7 ¼ x7 ¼ 7, z8 ¼ x8 ¼ 9, z9 ¼ x9 ¼ 8:

The order of x3 ¼ 2, x4 ¼ 6, x5 ¼ 5 in Y is

6, 5, 2:

Thus

z3 ¼ 6, z4 ¼ 5, z6 ¼ 2:

Therefore, the offspring Z is

Z ¼ ð1 3 6 5 2 4 7 9 8Þ:

In the two-point crossover, the Q difference between offspring
Z and parent 1 X is

FðZ,XÞ ¼Q ðZÞ�Q ðXÞ ¼
Y

K rkr L

Pyii�
Y

K rkr L

Pxii

" #
�

Y
1r ioK

Pxii

Y
Lo irn

Pxii:

ð14Þ

The larger FðZ,XÞ is, the more likely that Z is better than X.
The self-guided two-point crossover works as follows:
Notation:
�
 X: parent solution 1.

�
 TC: the number of candidates for parent 2.

�
 Yj: j¼ 1, . . . ,TC: candidates for parent 2.

�
 Z: offspring, i.e., the new solution generated by crossover.
Self-guided two-point crossover:
1.
 Randomly select two crossover points KoL.

2.
 for j¼1 to TC do

3.
 Let X be parent 1 and Yj be parent 2, and the crossover points

be K and L. Perform two-point crossover on X and Yj and
generate Zj ¼ ðzj

1, . . . ,zj
nÞ.
4.
 end for

5.
 Compare FðZi,XÞ, (i¼ 1, . . . ,TC). Output the Zi with the largest

F value as Z.

In this self-guided two-point crossover, we need to compare
FðZi,XÞ.

Given

FðZl,XÞ�FðZm,XÞ ¼
Y

K rkr L

Pzl
i
i�

Y
K rkrL

Pzm
i

i

" #
�

Y
1r ioK

Pxii

Y
Lo irn

Pxii,

ð15Þ

FðZl,XÞ4FðZm,XÞ

if and only ifY
K rkr L

Pzl
i
i4

Y
K rkr L

Pzm
i

i: ð16Þ

We can use (16) in the self-guided two-point crossover to
compare FðZi,XÞ which is to select a better candidate for parent 2.
The time complexity of finding the largest F is Oðn� TCÞ.

The Self-guided GA is different from previous EDAs, which
explicitly sample new solutions without using the crossover and
mutation operators. The Self-guided GA embeds the probabilistic
model in the crossover and mutation operators to explore and
exploit the solution space. The following section demonstrates
the performance of the Self-guided GA in the flowshop scheduling
problems.

4. Experimental studies

We conducted extensive computational experiments to com-
pare the Self-guided GA with several other algorithms for the
PFSPs by using the 110 Taillard instances [37]. The test problem
was the PFSP to minimize the makespan as defined in Section 2. It
involves processing n jobs on m machines. There were 10
instances in each of two different combinations of ðn,mÞ. In
combination one, n¼ 20;50,100 and m¼ 5;10,20 whereas in
combination two, ðn¼ 200,m¼ 10Þ and ðn¼ 200,m¼ 20Þ. We
coded all the algorithms in Java 2 and performed the experiments
on a Windows 2003 server (Intel Xeon 3.2 GHZ). The following
sections described the brief concept of the compared algorithms
and their own parameter settings.
4.1. Algorithms for comparison and parameter settings

In our experiments, we compared seven GA-based algorithms,
namely Self-guided GA, SGA, ACGA, GMA, and MGGA. We ran
each algorithm 30 times independently on each test instance and
there were a total of 110 instances. We obtained the experimental
results based on these tests. The brief explanation of the five
compared algorithms was shown as follows:
�
 SGA: A standard genetic algorithm. It is the same as the Self-
guided GA except that it is not augmented with the probabil-
istic model. Comparison with SGA helps us to understand the
effect of the probabilistic model in the Self-guided GA. We
coded the algorithm ourselves.

�
 ACGA [38]: Artificial Chromosome with Genetic Algorithms.

This is a recently developed approach that combines an EDA
with a traditional algorithm. The probabilistic model and
genetic operators are used to generate new solutions in a
different way from that used in our proposed Self-guided GA.
By using the hybrid framework, both global and local informa-
tion are used. This algorithm was developed in the laboratory
of the second author. We used the same code as in [38].

�
 GMA [11]: Guided Memetic Algorithm. The probabilistic

model is used to assist a local search operator to reduce
the computational overhead. This algorithm was developed
in the laboratory of the second author. We used the same code
as in [11].

�
 MGGA [38]: Mining Gene Genetic Algorithms. This algorithm

was designed for treating machine scheduling problems. The
linear assignment algorithm and a greedy heuristic are
embedded in MCGA. This algorithm was developed in
the laboratory led by the second author of this paper. We used
the same code as in [38].

�
 PSOspv [39]: It is a particle swarm optimization designed for

treating the PFSP. We used the data from [39] for comparison.

�
 CPSO: This algorithm was designed by [40], which employs a

heuristic as an improvement procedure. We used the data
from [39] for comparison.

�
 DDE [41]: The Discrete Differential Evolution. It is a method

designed for treating the PFSP. A problem-specific heuristic
NEH [42] is used in DDE. We used the data from [41] for
comparison.

Except the CPSO and DDE, there are five algorithms conducted
by the authors of this paper. In order to do a fair comparison, the
parameter settings were tuned systematically by Design-of-
Experiment (DOE). DOE is a statistic method which provides a
systematic way to distinguish the effects of the factors and the
difference among or between different levels [43]. There are also
different methods that can be applied to learn these parameters.
Interested readers refer to [44]. The parameter settings of the five
algorithms are given in Table 1.

To be fair to all the algorithms, we terminated each algorithm
after 500� 2� n evaluations of the objective function. We should
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point out that the same stopping criterion was used in PSOSPV,
CPSO, and DDE in [39–41], respectively.

4.2. Experimental results

4.2.1. Is the self-guided strategy useful?

To address this issue, we present the experimental results of
the average error ratio (ER) of the compared algorithms. In the
literature, ER is often used to evaluate the performance of
Table 1
Parameter settings of the implemented algorithms: Self-guided GA, SGA, ACGA,

GMA, and MGGA.

Method Settings

Self-guided GA TC¼4

TM¼2

l¼ 0:5

Population size¼100

Parentset size¼100

SGA Crossover rate¼0.6

Mutation rate¼0.3

Population size¼100

ACGA Starting generation¼0.7n(total generations)

Interval¼0.1n(total generations)

Crossover rate¼0.6

Mutation rate¼0.3

l¼ 0:5

Population size¼500

GMA Crossover rate¼0.6

Mutation rate¼0.3

l¼ 0:5

Population size¼100

MGGA Interval: 0.05n(total generations)

Crossover rate¼0.9

Mutation rate¼0.5

Population size¼100

Common settings The top 10% solutions in current population

directly enter the next generation

Table 2
Average error ratios of all the algorithms on Taillard’s instances.

n m SGA MGGA ACGA Sel

20 5 1.02 0.81 1.08 1.1

10 1.73 1.4 1.62 1.9

20 1.48 1.06 1.34 1.6

50 5 0.61 0.44 0.57 0.5

10 2.81 2.56 2.79 2.7

20 3.98 3.82 3.75 3.9

100 5 0.47 0.41 0.44 0.3

10 1.67 1.5 1.71 1.6

20 3.8 3.15 3.47 3.5

200 10 0.94 0.92 0.94 0.8

20 2.73 3.95 2.61 2.3

Total 1.93 1.82 1.85 1.8

Table 3
ANOVA results on the objective function values of the final solutions o

Source DF SS

Instances 109 1.924�1011

Algorithm 4 2,137,240

Instancesnalgorithm 436 10,234,102

Error 15,950 14,252,419

Corrected total 16,499 1.925�1011
algorithms applied to deal with the PFSPs, whereby the error
ratio of a solution Xi generated by an algorithm is calculated as
follows:

ERi ¼
CmaxðXiÞ�Ui

Ui
,

where Ui is the makespan value of the best known or optimal
solution provided by [37]. Table 2 shows the statistics of the
average ER values of all the algorithms on all the 110 test
instances. The results show that the Self-guided GA outperformed
SGA, PSOspv, CPSO, and GMA in terms of the ER value. It is also
evident that the Self-guided GA performed worse than DDE. It is
because that DDE employs the problem-specific heuristics NEH in
permutation flowshop scheduling problems while the Self-guided
GA does not use any domain knowledge. This reason implies that
the performance of the Self-guided GA could be further improved
if the NEH heuristic is utilized. We will study the effect of the NEH
heuristic on the Self-guided GA in the future.

Finally, even although the performance of Self-guided GA,
ACGA, and MGGA is quite similar, it is not necessary that the
three algorithms performed equally because the average value is
often influenced by the extreme values [43]. For this we used the
Analysis of Variance (ANOVA) to distinguish the real performance
in the next subsection.
4.2.2. Statistical tests

To perform a statistically sound analysis of the experimental
results, we conducted ANOVA on the objective function values of
the final solutions obtained for all the test instances by all the five
GA-based algorithms that we ran in our experiments. We are
particularly interested in the performance of Self-guided GA,
ACGA, and MGGA because their average error ratio is similar.
The ANOVA results are presented in Table 3. In the ANOVA table,
the source indicates factors and combinations of factors. In our
case, Instance and Method are factors. DF represents the degree of
freedom and SS is the sum of squares. The mean square is equal to
SS divided by DF. If the Pr-value of a factor (source) is less than
f-guided GA PSOspv DDE CPSO GMA

0 1.75 0.46 1.05 1.14

0 3.25 0.93 2.42 2.30

0 2.82 0.79 1.99 2.01

2 1.14 0.17 0.90 0.47

4 5.29 2.26 4.85 3.21

4 7.21 3.11 6.40 4.97

8 0.63 0.08 0.74 0.42

0 3.27 0.94 2.94 1.96

1 8.25 3.24 7.11 4.68

0 2.47 0.55 2.17 1.10

2 8.05 2.61 6.89 3.61

5 4.01 1.38 3.40 2.35

btained by the five algorithms on the 110 Instances.

Mean square F value Pr 4 F

1,765,744,182 1,976,058.93 o0:0001

534,310 597.95 o0:0001

23,473 26.27 o0:0001

894



Table 4
Duncan post-hoc test on the five different algorithms (the objective function

values of the final solutions).

Duncan grouping Mean N Method

A 5035.06 3300 GMA

B 5016.3655 3300 MGGA

C 5011.263 3300 SGA

D 5007.45 3300 ACGA

E 5003.5873 3300 Self-guided GA

Table 5
ANOVA results on the CPU time used by the five algorithms for the 110 instances.

Source DF SS Mean square F value Pr4F

Instances 109 3,485,410 31,976 47,283.04 o0:0001

Method 4 685,179 171,295 253,292.37 o0:0001

Instancesnmethod 436 1,632,899 3745 5537.97 o0:0001

Error 15,950 10,787 1

Corrected total 16,499 5,814,275

Table 6
Duncan post-hoc test of the five different algorithms (CPU time).

Duncan grouping Mean N Method

A 22.70 3300 MGGA

B 9.18 3300 Self-guided GA

C 6.80 3300 ACGA

D 6.53 3300 SGA

E 5.39 3300 GMA
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0.05, it means that there is a significant difference in this factor
[43].

In Table 3, the factor method has a Pr-value less than 0.0001.
Therefore, all these five GA-based algorithms performed very
differently. We further conducted the Duncan grouping test to
differentiate the performance of these algorithms. The Duncan
test results were shown in Table 4. In this table, mean is the
average value and N is the number of the observations. In the
Duncan grouping test, if two algorithms share the same alphabet
(i.e., they are in the same group), there is no significant difference
between them. Otherwise they are significantly different [43]. It is
evident from Table 4 that the five algorithms were significantly
different in their performance and the Self-guided GA performed
significantly better than the others.

We further conducted ANOVA and the Duncan grouping tests
on the CPU times of the five algorithms. The results are given in
Tables 5 and 6. Clearly the Self-guided GA was much faster than
MGGA but a bit slower than the other three algorithms.

In conclusion, in terms of solution quality, the Self-guided GA
is significantly better than the other four GA-based algorithms.
However, the Self-guided GA may consume more CPU time.
5. Discussions and conclusions

When we compared the Self-guided GA with SGA, SGA is the
same as the Self-guided GA except that SGA does not use global
statistical information to guide the search. It is clear from Table 4
that the Self-guided GA outperformed SGA in terms of the Duncan
grouping test. These results suggest that global statistical infor-
mation does improve the algorithm performance significantly. On
the other hand, ACGA uses both global statistical information and
location information about individual solutions. However, to let
the probabilistic models guide the search might be better. It is
because Table 4 also shows that the Self-guided GA was much
better than ACGA. Thus, we may conclude that the strategy of
combining two kinds of information in the Self-guided GA is more
effective and efficient than SGA and ACGA.

To conclude the research, we introduced and explored a new
strategy for combining global statistical information about pro-
mising search areas and location information about individual
solutions. The strategy uses global statistical information to
estimate the quality of a candidate solution for guiding the
crossover and mutation operations. We employed this new
strategy in this research to develop the Self-guided GA. We
assessed the performance of the proposed algorithm in dealing
with the NP-complete permutation flowshop scheduling problem
to minimize the makespan. The experimental results show that
the Self-guided GA indeed performs well in comparison with
several other GA-based algorithms published in the literature.
Our work can readily be extended to deal with other intractable
combinatorial optimization problems.

Future topics along this line of research may include:
�
 Enhancing the proposed algorithm by using problem-specific
knowledge. For example, NEH is suitable for the PFSP.

�
 Initializing the probabilistic model by an approach instead of

using 1=n for each Pij(t). This method could be based on the
values of the makespan and on the number of times we have
job j scheduled at position i.

�
 Extending the idea to combining EDAs with other meta-

heuristics and local search such as tabu search and variable
neighborhood search.

�
 Broadening the approach to deal with multi-objective optimi-

zation problems.

�
 Taking the variable interactions in the probabilistic models.
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