
Int. J. Production Economics 141 (2013) 24–33
Contents lists available at SciVerse ScienceDirect
Int. J. Production Economics
0925-52

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/ijpe
Addressing the advantages of using ensemble probabilistic models in
Estimation of Distribution Algorithms for scheduling problems
Shih-Hsin Chen a,n, Min-Chih Chen b

a Department of Electronic Commerce Management, Nanhua University, 62248, Taiwan, ROC
b Department of Information Management, WuFeng University, 62153, Taiwan, ROC
a r t i c l e i n f o

Article history:

Received 4 November 2011

Accepted 10 May 2012
Available online 22 May 2012

Keywords:

Estimation of Distribution Algorithms

Single machine scheduling problem

Permutation flowshop scheduling problem

Self-Guided Genetic Algorithm
73/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.ijpe.2012.05.010

esponding author.

ail address: shihhsin@mail.nhu.edu.tw (S.-H.
a b s t r a c t

Estimation of Distribution Algorithms (EDAs) have recently been recognized as a prominent alternative

to traditional evolutionary algorithms due to their increasing popularity. The core of EDAs is a

probabilistic model which directly impacts performance of the algorithm. Previous EDAs have used a

univariate, bi-variate, or multi-variable probabilistic model each time. However, application of only one

probabilistic model may not represent the parental distribution well. This paper advocates the

importance of using ensemble probabilistic models in EDAs. We combine the univariate probabilistic

model with the bi-variate probabilistic model which learns different population characteristics. To

explain how to employ the two probabilistic models, we proposed the Ensemble Self-Guided Genetic

Algorithm (eSGGA). The extensive computation results on two NP-hard scheduling problems indicate

the advantages of adopting two probabilistic models. Most important of all, eSGGA can avoid the

computation effort overhead when compared with other EDAs employing two models. As a result, this

paper might point out a next generation approach for EDAs.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, Estimation of Distribution Algorithms (EDAs)
have attracted a lot of attention and have emerged as a prominent
alternative to traditional evolutionary algorithms (Aickelin et al.,
2007; Chang et al., 2008b; Chen et al., 2009; Zhang and Li, 2011;
Hauschild and Pelikan, 2011; Pan and Ruiz, 2012). Compared with
genetic algorithms (GAs) that employ the crossover and mutation
operators to generate solutions, EDAs do not use the crossover or
mutation. Instead, they explicitly extract global statistical infor-
mation from the previous search and build a posterior probability
model of promising solutions from which new solutions are
sampled. It is the most important characteristic to distinguish
EDAs from GAs (Zhang et al., 2005).

A number of the latest papers on EDAs in solving some NP-hard
scheduling problems (Jarboui et al., 2009; Chen et al., 2009, 2011;
Ceberio et al., 2012; Zhang and Li, 2011; Pan and Ruiz, 2012) have
shown that EDAs are able to perform effectively. Ceberio et al. (2012),
in particular, extensively tested 13 famous permutation-based
approaches in EDAs on permutation flowshop scheduling problems
(PFSPs) and other three combinatorial optimization problems. Their
paper has provided a good basis for comparison for researchers.
ll rights reserved.

Chen).
However, most EDAs obtained statistical information from
only one model, being it a univariate, bi-variate, or multi-variate
probabilistic model. It is much limited to select an appropriate
model a priori. Some researches pointed out that the ensemble of
different models can improve robustness of optimization at
minimum cost (Lim et al., 2010; Goel et al., 2007; Samad et al.,
2008). To the best of our knowledge, only Jarboui et al. (2009),
and Pan and Ruiz (2012) simultaneously used two probabilistic
models, i.e., the univariate and bi-variate probabilistic models, to
generate statistical data, which have been the key distinguishing
characteristic from the approaches employed in the past. The
ensemble models could learn the positional and interaction
information between the variables and sample new solutions
from the models. This approach could generate more accurate
parental distributions for EDAs. So, this research attempts to
propose a new algorithm combining both the univariate and bi-
variate probabilistic models and then to validate the performance
of the two-model EDAs.

In this paper, we adopted a recently proposed EDA in Chen
et al. (2012a) which is termed as the Self-Guided Genetic Algo-
rithm (SGGA) to explain how to use two probabilistic models in
the algorithm. In addition, this novel algorithm used the statistical
information to guide the crossover and mutation operators with-
out sampling new solutions after the probabilistic model was
built. The probabilistic model actually estimated the quality of
generated solutions by crossover and mutation operators first.
Those with estimated higher quality will be allowed to enter the
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next generation for further evolution. By using this approach, the
probabilistic model guided the evolutionary process and SGGA
dealt with the PFSP in terms of the solution quality and computa-
tional efficiency successfully. In order to enhance the performance
of SGGA, both univariate and bi-variate probabilistic models are
employed in this ensemble model. The resultant algorithm is
named as Ensemble Self-Guided Genetic Algorithm (eSGGA).

To evaluate the performance of the proposed algorithm and
the effectiveness of using two probabilistic models together,
eSGGA was compared with some EAs and famous permutation-
oriented EDAs on two intractable scheduling problems in the
literature. The first scheduling problem included single machine
scheduling problem with an objective to minimize the total sum
of earliness and tardiness penalties. As a generalization of
weighted tardiness scheduling, the problem is strongly NP-hard
(Lenstra et al., 1977). The studied single machine scheduling
problem is regarded as NP-complete (Li, 1997). Secondly, permu-
tation flowshop scheduling problem with minimization of the
makespan is tested in this paper, which is one of the most exten-
sively studied problems in the area of scheduling (Framinan et al.,
2004; Hejazi and Saghafian, 2005; Ruiz and Maroto, 2005).
Because most variants of the PFSP are NP-complete, research on
the PFSP has been focused on developing effective heuristics
(Reeves, 1995; Minella et al., 2008; Chang et al., 2010; Jarboui
et al., 2009).

Contributions: Because the probabilistic model directly impacts
the performance of EDAs (Lozano et al., 2006), this research
advocates the importance of combining both univariate and bi-
variate statistical information. The proposed algorithm eSGGA
along with two other researches based on the similar idea
(Jarboui et al., 2009; Pan and Ruiz, 2012) are used to compare
its performance with other EDAs considering statistical informa-
tion from only one model. The experimental results show
the superiority of this approach. In addition, it is the same for
eSGGA which keeps the simplicity and efficiency than other EDAs
even two probabilistic models are employed. Finally, since EDAs
have not been extensively developed in the permutation-based
problems (Ceberio et al., 2012), this work is of importance in the
area of EDAs.

The rest of the paper is organized as follows: Section 2
introduces the scheduling problems that have been widely
studied. Over the years, there has been an increasing interest
for EDAs. In order to highlight the differences between our work
and previous EDAs, we review many latest EDAs focusing on the
scheduling problems in Section 3. Section 4 explains how to
employ two probabilistic models in EDAs. It should also be noted
that the probabilistic models are not applied to sample new
solutions, but used to estimate the solution quality instead.
Section 5 provides a detailed explanation of the eSGGA. Section
6 presents the experimental results on the performance of the
proposed algorithm in treating the two scheduling problems.
Section 7 draws the conclusions of this paper.
2. Problem formulations

The definitions of the single machine scheduling problems and
the permutation flowshop problem are presented in Sections 2.1
and 2.2, respectively.

2.1. Single machine scheduling problems with total earliness and

tardiness cost

In this paper, we tackle a deterministic single machine
scheduling problem without release dates in an attempt to
minimize the total sum of earliness and tardiness penalties.
A detailed formulation of the problem is described as follows: A
set of n independent jobs fJ1,J2, . . . ,Jng has to be scheduled with-
out preemptions on a single machine that can handle at most one
job at a time. It is assumed that the machine will be continuously
available from time zero onwards and no unforced machine idle
time is allowed. Job Jj, j¼ 1;2, . . . ,n, becomes available for the
processing at the beginning, requires a processing time pj and
should be completed on its due date dj. To represent the proces-
sing sequence of each job, we introduce a binary variable xij in this
model. This variable indicates whether the job Ji is assigned to the
position j. For any given schedule determined by the xij, the
earliness and tardiness of Jj can be defined as Ej ¼maxð0,dj�CjÞ

and Tj ¼maxð0,Cj�djÞ, respectively, where Cj is the completion
time of Jj. The mathematical model of this problem is shown as
follows:

Xn

j ¼ 1

ðajEjþbjTjÞ ð1Þ

s:t:
Xn

i ¼ 1

xij ¼ 1 8 j¼ 1 to n ð2Þ

Xn

j ¼ 1

xij ¼ 1 8 i¼ 1 to n ð3Þ

Cj�djþEj�Tj ¼ 0 ð4Þ

xijAf0;1g ð5Þ

The objective in Eq. (1) is then to find a schedule that
minimizes the sum of the earliness and tardiness penalties of all
jobs

Pn
j ¼ 1ðajEjþbjTjÞ, where aj and bj are the earliness and

tardiness penalties of job Jj. Eq. (2) assigns a job to a position,
we ensure that each position has a job to be processed. Eq. (3)
guarantees each job to be assigned. Eq. (4) represents the
relationship of the completion time and due day to the earliness
and tardiness cost.

Considering the inclusion of both earliness and tardiness costs
in the objective function, it is compatible with the philosophy
of just-in-time production, emphasizing to produce goods only
when they are needed. The early costs may represent the cost of
completing a job early, the deterioration cost of perishable goods
or a holding (stock) cost for finished goods. The tardy costs can
represent the cost of rush shipping, lost sales and loss of goodwill.
We assume that no unforced machine idle time is allowed and let
the machine idle only when no job is available for processing. This
assumption reflects that the cost of machine idleness is higher
than the early cost stemming from completing any job before its
due date in a production setting or the capacity of the machine is
limited as compared with its demand so that the machine must
remain in operation all the times. In Ow and Morton (1989) and
Wu et al. (1993), they provided some specific examples of pro-
duction arrangements with these characteristics. A characteristic
of the deterministic problem is an assumption that the set of jobs
is ready to process jobs in the beginning.

2.2. Permutation flowshop scheduling problems

Flowshops provide a convenient means to model serial man-
ufacturing processes. The flowshop is a processing facility that
consists of several machines on which jobs are processed in a
sequential manner. In the PFSP, all the jobs follow the same
processing order on each of the machines and every job is
independent to each other. The objective is to find a permutation
pn that minimizes CmaxðpÞ. The PFSP to minimize the makespan
can be defined as follows.
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Suppose that there are n jobs and m machines. Let pði,jÞ,
1r irn, 1r jrm, be the processing time of job i on machine j

and p¼ ðp1, . . . ,pnÞ be a job permutation (i.e., processing order of
the jobs). Then, the completion times Cðpi,jÞ are calculated as
follows:

Cðp1,1Þ ¼ pðp1,1Þ ð6Þ

Cðpi,1Þ ¼ Cðpi�1,1Þþpðpi,1Þ for i¼ 2, . . . ,n ð7Þ

Cðp1,jÞ ¼ Cðp1,j�1Þþpðp1,jÞ for j¼ 2, . . . ,m ð8Þ

Cðpi,jÞ ¼maxfCðpi�1,jÞ,Cðpi,j�1Þgþpðpi,jÞ for i¼ 2, . . . ,n, j¼ 2, . . . ,m

ð9Þ

The makespan is

CmaxðpÞ ¼ Cðpn,mÞ ð10Þ

Framinan et al. (2004) provided a review and a classification of
the heuristics for the PFSP. Hejazi and Saghafian (2005) presented
a comprehensive survey of the major results on this problem
over the period from 1954 to 2004. Exact methods and heuristic
methods (including evolutionary algorithms) were employed in
these studies, which could also be used as a good reference for the
PFSP with the objective of minimizing the makespan, denoted as
n/m/p/Cmax. Ruiz and Maroto (2005) provided a comprehensive
review and evaluation of the heuristics for the PFSP. Obviously, the
heuristics have been a major methodology to deal with the PFSP.
The reader may refer to Ruiz and Maroto (2005) for a detailed
review of metaheuristics, including tabu search, simulated anneal-
ing, genetic algorithms, iterated local search, and hybrid techni-
ques, for tackling various flowshop scheduling problems.
3. Importance of EDAs and a brief survey on recently
developed EDAs

In contrast with implicit processing of building blocks in GA,
EDAs explicitly depend on the used probability model. Sometimes
the blocks are built based on simple selection and crossover are
not effective enough to get optimum solution as they might not
effectively preserve important patterns (Pelikan et al., 2002). The
advantage of the probability model is its decisive factor affecting
the performance of EDAs. The more accurate the probability
model is, the more effective the algorithm will be in preventing
the disruption of important building blocks (Lozano et al., 2006).
Excellent surveys for previous EDAs already exist in Lozano et al.
(2006), Hauschild and Pelikan (2011), and Ceberio et al. (2012).

Many attempts have been recently made in the area of EDAs to
solve the scheduling problems or the combinatorial optimization
problems. In Chang et al. (2008b), they proposed a hybrid frame-
work to alternate between EDAs and genetic operators for solving
the single machine scheduling problem. The benefit of a hybrid
framework is that although EDAs improve the solution quality
efficiently in first few runs, the loss of diversity grows very fast as
more iterations are run (Shapiro, 2006; Branke et al., 2007; Chen
et al., 2010). An univariate probability model was used in their
algorithm. Apart from that, Liu et al. (2011) and Wang et al. (2011)
combined the particle swarm optimization algorithms with EDAs
to solve the PFSP and terminal assignment problems, respectively.

Jarboui et al. (2009) offered a hybrid approach, named EDA-VNS,
that combined the EDAs with the variable neighborhood search
(VNS) (Hansen and Mladenović, 2001), to solve the PFSPs by
the minimization of the total flowtime. Their probabilistic model
considered the order of the job queue and the building blocks of
the jobs. This was the first attempt which took into account
both the first order and the second order statistical information.
In addition, VNS is an improvement procedure as the EDA is run.
Jarboui et al. (2009) found EDA-VNS was effective in small
benchmarks; however, when it came to larger size problems,
VNS was better than EDA-VNS in terms of the objective values
and the computational time. It might be worthwhile to explore
why EDA-VNS did not outperform the VNS in large size bench-
marks. After that, a new EDA in Pan and Ruiz (2012) also
employed the job permutation and similar blocks of jobs to solve
lot-streaming flowshop problems. Their definitions of the job
permutation and similar blocks were different from those of
Jarboui et al. (2009). Moreover, they also introduced a diversity
measure to restart the evolutionary progress when the population
diversity decreased to a certain level.

Instead of sampling new solutions from the probabilistic
model, Chen et al. (2009) incorporated a new technique into the
probabilistic model. Their algorithm was named Guided Memetic
Algorithm (GMA) which reduced the possible neighborhood
combinations using guided operations to remove inferior moves.
The probabilistic models was regarded as a first approximation of
a fitness surrogate which controlled the balance between genetic
search and local search.

Later on, this major concept of GMA was further realized in the
SGGA (Chen et al., 2012a) to guide the evolutionary direction.
Their univariate probabilistic model acted as a fitness surrogate
which predicted the fitness of the new solutions generated by
a crossover or mutation operator. Based on the evaluation of
candidate solutions, SGGA was able to select an appropriate
solution by the genetic operators. Due to the time-complexity of
SGGA is less than Oðn2Þ when the probabilistic model was used to
sample new solutions, SGGA was shown to be more efficient than
the previous EDAs. Although the probabilistic model had been
employed to be a fitness predictor before (Sastry et al., 2006;
Brownlee et al., 2008; Chen et al., 2009; Lima et al., 2009), no
previous approaches used the probabilistic model in the same
way as that used in SGGA. Consequently, SGGA pointed to a new
research direction in EDAs.

In Zhang and Li (2011), they applied the longest common
subsequence together with EDAs to mine good building blocks.
Their own results could be explained by a similar research on EA/
G (Evolutionary Algorithm with Guided Mutation) (Zhang et al.,
2005). EA/G also let the offspring inherit good genes from the best
solution with a certain probability. This approach could speed up
the convergence of EDAs. Both algorithms employed a parameter
to control the population diversity.

Ceberio et al. (2012) examined 13 famous permutation-based
EDAs on some combinatorial optimization problems, including
the PFSP, the traveling salesman problem, the quadratic assign-
ment problem, and the linear ordering problem. Among these
EDAs, EHBSAWT (Edge Histogram Based Sampling Algorithm with
Template) (Tsutsui, 2009) and NHBSAWT (Node Histogram Based
Sampling Algorithm with Template) (Tsutsui, 2006) provided
consistent results on their four studied problems. Given their
excellent efforts, we adopted their empirical results to evaluate
the proposed algorithm and recent EDAs.

Except the single machine scheduling problem and flowshop
scheduling problems, Wang and Fang (2012a,b) proposed the
EDAs to solve the multi-mode resource-constrained project sche-
duling problem (MRCPSP). Since the job sequence was not a
permutation, they adapted the proposed EDAs by two problem-
specific techniques. Each chromosome was encoded by the modes
of activity and decoded by the multi-mode serial schedule
generation scheme. Their encoding and decoding scheme could
lead the EDAs to solve different categories of problems.

To conclude these recent EDAs, only a few researches took into
account the order of the job queue and the building blocks of the
jobs together (Chen et al., 2012b; Jarboui et al., 2009; Pan and
Ruiz, 2012). Some researchers pointed out the ensemble of
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different models generally outperform most of the individual
models (Lim et al., 2010; Goel et al., 2007; Samad et al., 2008).
This ensemble model approach might provide more accurate
parental distributions in EDAs. EDAs might capture the problem
structure well when variable interactions exist, particularly when
there are variable interactions in scheduling problems. This
research has conducted extensive experiments to valid the EDAs
using only one model to generate probabilistic information as
well as the algorithms using two statistical models. In addition,
this paper has extended a latest introduced SGGA to eSGGA that
employs univariate and bi-variate probabilistic models at the
same time. The detailed information of the probabilistic models
and eSGGA will be depicted in the next section.
4. Establishing probabilistic models and the fitness
estimation

The probabilistic model is the core of EDAs (Lozano et al.,
2006). Before the proposed algorithm is presented, we define both
univariate and bi-variate probabilistic models used by eSGGA in
Section 4.1. After that, the ensemble models are used to estimate
the solution quality. We introduce this fundamental approach of
eSGGA in Section 4.2.
4.1. Univariate and Bi-variate probabilistic models

To let probabilistic models extract information from the
parental distribution, a set of M better chromosomes X1, X2, . . .,
XM are selected at the current generation t. Any selection method,
such as the proportional selection and the tournament selection,
can be used for this purpose. For simplicity, we adopt the
2-tournament selection in our method. The univariate model is
introduced first. In Eq. (11), let a binary variable Xi

k½k� represent the
n jobs in chromosome i

Xi
k½k� ¼

1 if job k is at position ½k�

0 otherwise
, k¼ 1, . . . ,n, i¼ 1, . . . ,M

�
ð11Þ

where ½k� is the position of job k in X. We also investigate the
univariate model applied by Jarboui et al. (2009) and Pan and Ruiz
(2012) in which the binary variable Xi

k½k� before or at position ½k� in
the population is taken into account, a different approach from
ours. We find the definition of Eq. (11) is suitable for eSGGA in the
prior experiments.

After we sum up the statistical information from all M chromo-
somes to the Xi

k½k�, the univariate model fk½k�ðtÞ in Eq. (12)
is obtained. fk½k�ðtÞ represents the number of times that job k is
at position ½k�

fk½k�ðtÞ ¼
XM
i ¼ 1

Xi
k½k�, k¼ 1, . . . ,n ð12Þ

When it comes to the bi-variate probabilistic model, we define
a new binary variable vi

k0k
ðtÞ in Eq. (13). vi

k0k
ðtÞ indicates whether

job k is immediately after the job k0 in chromosome i.

vi
k0kðtÞ ¼

1 if job k is after the job k0

0 otherwise
, k¼ 1, . . . ,n, i¼ 1, . . . ,M

(

ð13Þ

where kak0: After we summarize the statistical information of
vi

k0k
ðtÞ from the M chromosomes, the bi-variate statistical infor-

mation ck0kðtÞ could be obtained in Eq. (14). ck0kðtÞ indicates the
number of times that job k immediately after the job k0

ck0kðtÞ ¼
XM
i ¼ 1

vi
k0k, k¼ 1, . . . ,n, kak0 ð14Þ

At each generation, we update the ensemble models by PBIL
(Baluja, 1994) in Eqs. (14) and (15). The two statistics with
learning continually modify the search space and then improve
the performance. We may point out that both Jarboui et al. (2009)
and Pan and Ruiz (2012) did not employ the learning algorithm.
In this research, two learning rates, lf and lc, are decided by
Design-of-Experiment (DOE)

fk½k�ðtÞ ¼fk½k�ðtÞ � ð1:0�lfÞþfk½k�ðt�1Þ � lf, lfAð0;1Þ ð15Þ

ck0kðtÞ ¼ck0kðtÞ � ð1:0�lcÞþck0kðt�1Þ � lc, lcA ð0;1Þ ð16Þ

After fk½k�ðtÞ and ck0kðtÞ learn from the previous search, we
consider how to form the probabilistic models which use both the
statistics. Let PtðXk½k�Þ be the probability value of the job k in
position ½k�. This research likes to select a job k which has higher
probability value than other jobs when the univariate and bi-
variate statistical information are used. To do this, fk½k�ðtÞ is
multiplied by ck0kðtÞ which is proportioned to the summarized
probability values of all unscheduled jobs that could be assigned
at positions ½k�. In addition, it is noticeable that when we select a
job at the first position, ck0kðtÞ could be zero in the most cases
while only few ck0kðtÞ40. It causes a problem that only few jobs
could be selected at the first position for producing offspring. The
population diversity is decreased easily in this case (Pan and Ruiz,
2012). As a result, Pan and Ruiz (2012) use the univariate model
to select a job at the first position.

It is reasonable to use the univariate model at the first position
because there is no prior job; however, this research suggests that
a random value with the uniform distribution is used according to
our pilot experiments. As a result, the combined model Pk½k�ðtÞ is
formulated as follows:

PtðXk½k�Þ ¼

Uð0;1Þ, ½k� ¼ 1

fk½k�ðtÞ � ck0kðtÞ=
P

lAO
ðfl½k�ðtÞ � ck0 lðtÞÞ, ½k� ¼ 2;3, . . . ,n

8<
:

ð17Þ

where k¼ 1, . . . ,n and O is the set of the unscheduled jobs. In
previous EDAs, Pt is used to sample new solutions. Instead of
sampling new solutions, Section 4.2 uses Pt in a different way.
4.2. Predicting the solution quality

After the probabilistic model Pt is built in Eq. (17), the
estimated quality of a solution X is defined as follows:

QtðXÞ ¼
Yn

k ¼ 1

PtðXk½k�Þ ð18Þ

where ½k� is the position of job k in X. QtðXÞ is an estimation value
of how ‘promising’ X is (Chen et al., 2012a). This estimation is
much easier to compute. For example, when we modify a parent
solution X to be two new solutions Z1 and Z2 by crossover or
mutation operator, we calculate the difference of QtðZ

1
Þ and

QtðZ
2
Þ. If QtðZ

1
Þ�QtðZ

2
Þ40, it means that the new solution Z1

might be better than the other solution Z2 when they are both the
variants of the parent solution X. Thus, Z1 is used in the popula-
tion and this characteristic let SGGA or eSGGA be distinguished
from previous EDAs.

After the two probabilistic models and fitness estimation are
defined in this section, how eSGGA guides the evolutionary
direction is discussed in the next section.
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5. Proposed methodology

Because eSGGA takes the advantages from SGGA, the major
characteristic of eSGGA remains that the probabilistic model
guides the evolutionary direction without sampling new solu-
tions. The probabilistic model is used to evaluate the quality of
candidate solutions generated by the crossover and mutation
operators. Then, the algorithm decides a better candidate to
be applied in the population beforehand. The major difference
between eSGGA and SGGA is that the former employs the
ensemble models, while the latter uses the univariate probabil-
istic model only. eSGGA is able to deal with the order information
and the variable interactions of the jobs.

Although the main procedure of the eSGGA is similar to that of
SGGA, the probabilistic model Pt of eSGGA is different from SGGA.
Pt also alters the behavior and the calculations of self-guided
crossover and self-guided mutation. We will explain the detailed
differences later. The main procedure of the eSGGA is described as
follows:

Notation:
�
 Population: a set of solutions.

�
 PopSize: the size of Population.

�
 G: the maximum number of generations.

�
 t: generation index.

�
 Pt: probabilistic model at generation t. Pt is composed of the

univariate and bi-variate probability models.

�
 Parentset: the set of parent solutions selected from the current

population.

�
 Newset: the set of new solutions generated at each generation.

�
 N: the size of Newset.

Algorithm:
1:
 Initialize Population
2:
 Evaluate(Population)

3:
 t’0

4:
 Initialize Pt
5:
 while toG
6:
 Parentset¼Select(Population)

7:
 Ptþ1’ modelupdate(Parentset, Pt)

8:
 Generate Newset by using self-guided crossover

9:
 Mutate every new solution in Newset by using

self-guided mutation

10:
 Evaluate(Newset)

11:
 Use the solutions in Newset to replace the N worst

solutions in Population.

12:
 t’tþ1

13:
 end while
X : {53|126|4} Y 1: {21|653|4} Z 1: {53|216|4}
X : {53|126|4} Y 2: {65|431|2} Z 2: {53|612|4}

Fig. 1. Parent solution X could be mated with two candidates (Y1 and Y2).
In Line 1 of the Algorithm, a set of solutions are generated
randomly or by using a heuristic to form the initial Population,
such as NEH (Nawaz et al., 1983), a well-known heuristic
approach for flowshop scheduling problems. The objective func-
tion values of all the solutions in Population are computed in
Line 2. Line 3 initializes the generation index t. The probability
model Pt is initialized to be 1=n in Line 4.

Line 6 selects a number of solutions from Population to form
Parentset by a number of independent 2-tournament selections.
Line 7 computes Pt introduced in the previous section. In Line 8, we
employ the self-guided crossover operator (the details of this
crossover are given in Section 5.1) to produce N solutions. In Line
9, we mutate each new solution generated in Line 8 by using the
self-guided mutation operator (the details are given later). Line 10
computes the objective function values of all the new solutions.
In Line 11, new solutions replace the N worst solutions in
Population and the Popsize�N best solutions in the old population
will enter the new population. This elitism scheme is widely used
in evolutionary algorithms controlled by an elitism ratio.

We use Qt(X) to guide crossover and mutation in Sections 5.1
and 5.2. In the following, we drop t in P and Q for simplicity.

5.1. Self-guided crossover operator

A crossover procedure is executed after better chromosomes
have been selected. In the proposed self-guided crossover opera-
tor, the crossover operator attempts to mate a parent solution
with the other appropriate chromosome that yields better off-
spring. To determine the other appropriate mated solution, a
parameter TC is the number of tournament selection of different
crossover candidates. The evaluation of the TC choices is to
quality function Q defined in Eq. (18) to guide the evolutionary
direction.

Because this research employs the two-point center crossover
(Murata and Ishibuchi, 1994), the following description is based
on this crossover method, where the sequence between the two
cut points are altered. Suppose that the two random cut-points
are named K and L, where KoL. When we set K is 3 and L is 5
in the 6-job permutation, Fig. 1 illustrates a parent solution
{53|126|4} could be mated with other two candidates, including
{21|653|4} and {65|431|2}. Z1 and Z2 are the offsprings if the
parent solution X is mated with the two candidates Y1 and Y2,
respectively.

We could realize that the order of the genes located inside the
two random cut-points is changed. For the genes staying outside
this range of K and L, they remain the same. In the two-point
central crossover, we use the Q to estimate the solution quality of
the offspring, the difference between any offspring Zi and the
parent solution X is

FðZi,XÞ ¼Q ðZi
Þ�Q ðXÞ ¼

Y
K rkr Lþ1

PðZi
k½k�Þ�

Y
K rkr Lþ1

PðXk½k�Þ

( )

�
Y

1rkoK

PðXk½k�Þ
Y

Lþ1okrn

PðXk½k�Þ: ð19Þ

The larger the FðZi,XÞ is, the more likely that Zi better than the
X is. In addition, the differences between SGGA and eSGGA are
the computation of the PðXi

k½k�Þ (or PðZi
k½k�Þ) which considers the

univariate probability together with the bi-variate probability in
Eq. (17), and the probability difference at position Lþ1 should be
calculated because its prior job is changed. The self-guided two-
point crossover works as follows:

Notation:
�
 X: the parent solution.

�
 TC: the number of candidates for mating.

�
 Yi: i¼ 1, . . . ,TC: candidates for the second parent.

�
 Zi: offspring, i.e., the new solution generated by crossover.

Self-guided two-point crossover:
1:
 Randomly select two crossover points KoL.

2:
 for i¼1 to TC do

3:
 Let X be the first parent and Yi be mated with X, and the

crossover points be K and L. Perform two-point crossover

on X and Yi and generate Zi
¼ ðzi

1, . . . ,zi
nÞ.
4:
 end for
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5:
 Compare FðZi,XÞ, (i¼ 1, . . . ,TC:). Output the Zi with the
largest F value as Z.
In this self-guided two-point crossover, we need to compare
FðZi,XÞ. Given

FðZl,XÞ�FðZm,XÞ ¼ Q ðZl
Þ�Q ðZm

Þ

¼
Y

K rkrLþ1

PðZl
k½k�Þ�

Y
K rkrLþ1

PðZm
k½k�Þ

( )

�
Y

1rkoK

PðXk½k�Þ
Y

Lokrn

PðXk½k�Þ,FðZ
l,XÞ4FðZm,XÞ ð20Þ

if and only ifY
K rkr Lþ1

PðZl
k½k�Þ4

Y
K rkr Lþ1

PðZm
k½k�Þ ð21Þ

We use (21) in the self-guided two-point crossover to compare
FðZi,XÞ which is to select a better candidate to be mated with X. By
using this approach, we preserve the original concept of SGGA.
However, both univariate and bi-variate probability models are used
in the self-guided crossover operator. In addition, our approach is
not limited to two-point central crossover operator. It could be
revised to other permutation-based crossover operators to measure
the difference between the parent solution and the offspring.

When we do the self-guided mutation, Q is also used to
estimate the difference in the mutated solution to the original
solution, which is explained in the next section.

5.2. Self-guided mutation operator

Let X be a solution (i.e., a permutation from 1 to n) to be
mutated. Suppose we swap the positions of job i and j in X and
obtain Y. We can compute the quality difference in Q caused by
this swap as follows:

Dij ¼Q ðYÞ�Q ðXÞ ¼ fPðXi½j�ÞP
0
ðXiþ1½iþ1�ÞPðXj½i�ÞP

0
ðXjþ1½jþ1�Þ

�PðXi½i�ÞPðXiþ1½iþ1�ÞPðXj½j�ÞPðXjþ1½jþ1�Þg
Y

k=2fi,iþ1,j,jþ1g

PðXk½k�Þ ð22Þ

The larger the Dij is, the more likely that Y is better than the X

is. Both self-guided mutation and the same with the self-guided
crossover consider the univariate and bi-variate probability
information to compute the PðXk½k�Þ. In addition, the probability
changes of the jobs after the swapped genes (i.e., the position at
½iþ1� and ½jþ1�) should be considered as well.

In our proposed self-guided mutation operator, we randomly
pick some pairs of jobs. This parameter is named TM which sets
the number of swap operations. For each pair, we compute the
differences in Q caused by swapping the positions of its two jobs
in the parent solution X. Then, we conduct the swapping with the
largest difference in X to produce a new solution. Formally, the
self-guided mutation operator works as follows:

Notation:
�
 X: parent solution, i.e., the solution to be mutated.

�
 TM: the number of swappings to be considered.

�
 Y: offspring, i.e., the new solution.
Self-guided mutation:
1:
 Randomly select TM pairs of jobs: fi1,j1g, . . . ,fiTM ,jTMg.

2:
 Compare Di1j1

, . . . ,DiTM jTM
and find the pair fik,jkg with the

largest D value.

3:
 Swap the positions of jobs ik,jk in X to generate Y.
In the self-guided mutation operator, we need to compare
the differences in TM quality. A simple way to compare two
differences is given as follows:

Dij�Dlm ¼ fPðXi½j�ÞP
0
ðXiþ1½iþ1�ÞPðXj½i�ÞP

0
ðXjþ1½jþ1�ÞPðXl½l�Þ

�PðXlþ1½lþ1�ÞPðXm½m�ÞPðXmþ1½mþ1�Þ

�PðXi½i�ÞPðXiþ1½iþ1�ÞPðXj½j�ÞPðXjþ1½jþ1�Þ

�PðXl½m�ÞP
0
ðXlþ1½lþ1�ÞPðXm½l�ÞP

0
ðXmþ1½mþ1�Þg

�
Y

k=2fi,iþ1,j,jþ1,l,lþ1,m,mþ1g

PðXk½k�Þ,

Dij4Dlm

if and only if

PðXi½j�ÞP
0
ðXiþ1½iþ1�ÞPðXj½i�ÞP

0
ðXjþ1½jþ1�Þ

�PðXl½l�ÞPðXlþ1½lþ1�ÞPðXm½m�ÞPðXmþ1½mþ1�Þ

�PðXi½i�ÞPðXiþ1½iþ1�ÞPðXj½j�ÞPðXjþ1½jþ1�Þ

�PðXl½m�ÞP
0
ðXlþ1½lþ1�ÞPðXm½l�ÞP

0
ðXmþ1½mþ1�Þ40 ð23Þ

Based on the above results, we can use (23) to compare Q

differences in the self-guided mutation operator according to the
largest D value.

In general, eSGGA is different from previous EDAs because
eSGGA embeds the probabilistic model in the crossover and
mutation operators to explore and exploit the solution space. In
addition, eSGGA takes the ensemble model approach which may
provide a robust result in different problems. To validate the
performance, we test eSGGA on two different NP-Hard scheduling
problems in the following section.
6. Experimental studies

This paper advocates the benefit of applying ensemble models
to EDAs. eSGGA and other two EDAs, JEDA (Jarboui et al., 2009)
and PREDA (Pan and Ruiz, 2012), fall into the same group. Three
algorithms are used to compare the performance against other
EDAs without using two probabilistic models. To evaluate the
performance of these algorithms, we have conducted extensive
computational experiments on single machine scheduling pro-
blems and permutation flowshop scheduling problems. The stop-
ping criterion is the number of total examined evaluations and
the replication of each algorithm on each instance is 30 times on a
Windows 2003 server (Intel Xeon 3.2 GHz).

6.1. Single machine scheduling problems

There are numerous data sets published in the literature
(Sourd and Kedad-Sidhoum, 2003) for the single machine sche-
duling problems, including 20, 30, 40, 50, 60, and 90 jobs. Each
data set of 20 jobs up to 50 jobs contains 49 instances (problems)
whereas there are 9 instances in the data set of 60 jobs and 90
jobs. We carry out our experiments on these total 214 instances.

In order to test the robustness of the algorithms, the stopping
criteria are based on the number of examined solutions, which are
75,000, 100,000, and 125,000 solutions. This setting is identical to
our previous research (Chen et al., 2010). The three solution
evaluations stand for the different implementation environments
allowing low, medium, and high level of CPU time with the same
population size 100. Moreover, when we use 75,000 solutions, it
means that the algorithms stop at generation 750.

We have compared five EDAs-based algorithms in our experi-
ments. The brief concept of the compared algorithms and their
own parameter settings are shown as follows:
�
 ACGA (Artificial Chromosome with Genetic Algorithms) (Chang
et al., 2008a): This algorithm alternates the EDA operator with
genetic operators. The probabilistic model belongs to a univariate
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probabilistic model. By using the hybrid framework, both global
and local information is used. We have employed the same code
as in Chang et al. (2010).

�
 EA/G (Zhang et al., 2005): EA/G is also named as guided

mutation. This algorithm inherits a proportion of salient genes
from an elite. Then, the rest part of a new solution is copied
from its parent and the rest is sampled from a univariate
probabilistic model. We have employed the same data as in
Chen et al. (2011).

�
 SGGA (Chen et al., 2012a): The probabilistic model is used to

guide the evolutionary process of crossover and mutation. The
probabilistic model also belongs to a univariate probabilistic
model. We have employed the same code as in Chen et al.
(2012a).

�
 JEDA (Jarboui et al., 2009): JEDA is the first algorithm which

focuses on both the order of the jobs in the sequences and the
similar blocks of jobs. Even though JEDA was considered to
apply variable neighborhood search (VNS), we do not use VNS
so that we could evaluate the performance of the probabilistic
models in JEDA.

�
 PREDA (Pan and Ruiz, 2012): This algorithm was developed

upon JEDA, but they used the different formulas to calculate
sum of the probabilistic model and adopted restart to refresh
model according to the diversity. The method of sampling
chromosome is also different from JEDA. We have employed
the same algorithm in Pan and Ruiz (2012) to design for single
machine scheduling problems.

�

Fig. 2. Different solutions were examined and evaluated by ACGA, EA/G-GA,

SGGA, JEDA, PREDA and eSGGA.
eSGGA: We code this proposed algorithm in Java. The para-
meters of the eSGGA are fixed experimentally as follows:
Pc¼0.9, Pm¼0.5, Tc¼4, Tm¼2, lf ¼ 0:1, lc ¼ 0:9, and a para-
meter Interval¼7. Interval specifies the timing to refresh the
information in the probabilistic models which may reduce the
computation overhead.

Table 1 shows the partial statistical results of the average
objective values on the six sets where the stopping criterion is
125,000. ACGA, EA/G, SGGA, JEDA and PREDA algorithms are
compared with eSGGA. We adopted the experimental results
from ACGA, EA/G and SGGA proposed on our earlier researches.
The JEDA and PREDA algorithms are coded by the authors because
the original paper did not conduct the experiments on the single
le 1
rage objective values of single machine scheduling problems with the minimizatio

stance ACGA EA/G SGGA

OBJ CPU OBJ CPU OBJ CP

s222a 5288.07 0.83 5289.31 3.38 5288.48 0.5

s255a 2381.07 0.81 2380.90 3.35 2380.53 0.5

s288a 3421.0 0.81 3421.0 3.38 3421.0 0.5

s322a 11,572.97 1.19 11,575.53 5.84 11,571.27 0.8

s355a 6057.13 1.15 6068.20 5.83 6057.07 0.8

s388a 11,317.0 1.14 11,319.30 5.84 11,317.0 0.8

s422a 25,658.72 1.60 25,667.53 8.76 25,664.77 1.1

s455a 6442.53 1.55 6423.90 8.76 6427.73 1.1

s488a 16,862.0 1.52 16,863.73 8.77 16,862.0 1.1

s522a 29,315.47 2.08 29,323.40 12.28 29,319.53 1.4

s555a 10,213.27 2.03 10,210.27 12.28 10,220.83 1.4

s588a 24,844.0 1.98 24,848.37 12.31 24,845.17 1.4

s622a 43,090.60 2.62 43,066.07 16.63 43,085.40 1.8

s655a 16,186.60 2.57 16,162.73 16.73 16,191.13 1.8

s688a 33,624.20 2.50 33,617.50 16.79 33,613.60 1.8

s922a 88,887.77 4.80 88,866.47 34.93 88,868.70 3.3

s955a 30,722.73 4.72 30,637.73 35.05 30,672.00 3.3

s988a 81,988.20 4.64 81,989.77 35.11 81,989.17 3.3

verage 24,881.85 2.14 24,873.98 13.67 24,877.52 1.5
machine scheduling problems. We already followed their descrip-
tion to code the EDAs into the comparisons. Both algorithms
provide fundamental comparison results on the single machine
scheduling problem and the flowshop scheduling problems.

We mark the best result in bold in Table 1. The partial results
of Table 1 indicate that eSGGA is better than SGGA. In addition,
the total average objective value of eSGGA is better than others.
Even though PREDA gets 10 chances to have the lowest average
objective values in the instances of job 20 to job 60, PREDA does
not perform well in the large-size instances. The convergence
behavior of these EDAs is discussed in Fig. 2.

In order to obtain a meaningful convergence plot at the
generation 750, 1000, and 12,500, we have replicated the six
algorithms 30 times. Once the 30 objective values of different
generations are obtained, the data mean is obtained to depict
Fig. 2. In Fig. 2, we point out that JEDA converges slowly in the
early stage. Its performance is improved as the number of
generations increases. Compared with JEDA, PREDA performs
n of total earliness and tardiness (examined 125,000 solutions).

PREDA JEDA eSGGA

U OBJ CPU OBJ CPU OBJ CPU

9 5287.66 1.40 5288.90 0.86 5288.07 1.22

9 2378.40 1.36 2378.93 0.83 2380.53 1.10

9 3421.0 1.40 3421.0 0.91 3421.0 1.16

3 11,568.0 2.46 11,569.37 1.27 11,571.17 1.64

3 6056.4 2.37 6057.20 1.17 6056.87 1.48

2 11,317.0 2.36 11,317.0 1.14 11,317.0 1.45

0 25,658.07 3.91 25,660.50 1.65 25,659.20 2.08

2 6434.20 4.34 6414.33 1.55 6417.07 1.93

1 16,864.60 4.27 16,862.87 1.53 16,864.60 1.89

5 29,315.63 6.36 29,321.73 2.11 29,319.37 2.51

6 10,201.20 6.20 10,200.67 2.05 10,199.33 2.42

5 24,844.0 6.27 24,844.0 2.03 24,844.0 2.36

4 43,059.8 8.75 43,081.97 2.78 43,100.53 3.10

5 16,267.07 8.34 16,198.03 2.69 16,171.73 2.98

3 33,601.3 8.20 33,605.30 2.68 33,616.00 2.97

8 88,905.10 17.12 88,909.27 5.37 88,872.30 5.54

9 30,680.83 15.71 30,738.70 5.31 30,628.73 5.26

9 81,985.63 15.09 82,030.90 4.66 81,984.17 4.96

3 24,880.33 6.44 24,883.37 2.26 24,872.87 2.56
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consistently by different stopping criteria. PREDA is more likely to
achieve better performances than JEDA since PREDA uses better
probabilistic models with a consideration of the population
diversity. When eSGGA is compared with SGGA, it appears that
eSGGA is relatively advantageous, as displayed on the conver-
gence plot, because eSGGA yields promising results by different
stopping criteria.

We also take a close look of SGGA and eSGGA about the
convergence behavior. In Fig. 3, we select the best results from
SGGA and eSGGA for sks655a instance and observe the conver-
gence in different generations. eSGGA converges faster than SGGA
before 625 generations. A close look at this comparison reveals
that probabilistic model of eSGGA can present more effective than
SGGA for single machine scheduling problems. That is, combina-
tion of univariate probabilistic model and bivariate probabilistic
model can perform well than only using univariate probabilistic
model. It follows from what has been said that the order of jobs
and the similar block of jobs can provide important information
for evolution.

Finally, to test the significance of these algorithms, ANOVA
(Analysis of Variance) has been used to provide significant
analysis results, as shown in Table 2. In the ANOVA table, the
source indicates factors and combinations of factors which may
influence the performance (or response). DF represents the degree
of freedom and SS is the sum of squares which represent the
deviation of each solution to the data mean. The mean square is
equal to SS divided by DF. Then, we calculate the F value according
to the mean square of the source factors to the mean square error
and obtain the P value. If the P value of a factor source is o0:05, it
means that there is a significant difference in this factor
(Montgomery, 2008).

Due to the P values of some factors are o0:0001 in Table 2, a
significant difference exists between these methods. Then, the
Fig. 3. A close look of SGGA and eSGGA.

Table 2
ANOVA Objective value at the stopping criterion of 125,000 examined solutions.

Source DF SS

Instances 213 7.97Eþ12

Method 5 121,384.4338

Instances�method 1065 4,616,675.241

Error 37,236 49,724,692.66

Corrected total 38,519 7.97Eþ12
Duncan grouping test is further conducted to differentiate the
performance of these algorithms (see Table 3).

In the Duncan grouping test, Mean is the average value and N

is the number of the observations. If the levels share the same
alphabet (i.e., they are in the same group), there is no significant
difference between them. Otherwise, they are significantly differ-
ent (Montgomery, 2008). Based on the results shown in Table 3, it
is evident from the Duncan grouping test that the levels are
significantly different in their performance. To sum up, eSGGA is
the best among the compared algorithms. There is no difference
among JEDA, PREDA, and ACGA because those three algorithms
are in the same group. However, they perform better than EA/G
which adopts a univariate model without employing a hybrid
framework like ACGA.

Table 3 shows that eSGGA is very attractive because the
algorithm performs well and it is not time-consuming compared
with other EDAs. We further examine the performance of the
proposed EDAs on PFSPs in the next section.

6.2. Permutation flowshop scheduling problems

Ceberio et al. (2012) examined 13 well-known EDAs on the
flowshop scheduling problems, 9 of which were applied for
comparison, including UMDA (Univariate Marginal Distribution
Algorithm) (Larrañaga et al., 2000), MIMIC (Mutual Information
Maximization for Input Clustering) and EBNABIC (Estimation of
Bayesian Network Algorithm) in Bengoetxea et al. (2002), Tree
(Pelikan and Tsutsui, 2007), IDEA-ICE (Iterated Density Estimation
Evolutionary Algorithm-Induced Chromosome Elements Exchan-
ger) (Bosman and Thierens, 2001), EHBSAWT (Tsutsui, 2009),
EHBSAWO (Edge Histogram Based Sampling Algorithm without
Template) (Tsutsui and Miki, 2002), NHBSAWT, and NHBSAWO

(Node Histogram Based Sampling Algorithm without Template)
(Tsutsui, 2006). These EDAs only used one probabilistic model in
the algorithm.

The four instance sets of the flowshop benchmarks were selected,
such as the tai20�5, tai20�10, tai50�10, and tai100�20.
In addition, the first six instances from each set were used. So, the
amount of the 24 instances were employed to test these EDAs.
To make a fair comparison, all the EDAs used the same population
size (10� n) and stopping criterion (100� n). These algorithms ran
10 times on these instances and then collected the average error
Mean square F Value P Value

374,103.87818 2.80Eþ07 o0:0001

24,276.88677 18.18 o0:0001

4334.90633 3.25 o0:0001

1335.392971

Table 3
Duncan grouping Objective value at the stopping criterion of 125,000 examined

solutions.

Duncan grouping Mean N Methods

A 12,812.898 6420 EA/G

A 12,812.576 6420 SGGA

B 12,810.149 6420 ACGA

B 12,809.719 6420 JEDA

B 12,809.309 6420 PREDA

C 12,807.977 6420 eSGGA



Table 4
Average error ratio of EDAs on Taillard instances with makespan criterion.

Instance UMDA MIMIC EBNABIC TREE IDEA-ICE EHBSAWT EHBSAWO NHBSAWT NHBSAWO PREDA JEDA SGGA eSGGA

ta001 1.16 1.55 1.12 1.64 1.96 0.30 1.41 1.27 1.49 1.20 1.16 1.20 1.16

ta002 0.96 0.67 1.40 1.16 0.90 0.05 0.49 0.27 0.31 0.88 0.49 0.46 0.36

ta003 3.95 3.36 3.27 4.18 5.06 1.30 3.04 0.71 1.23 2.04 1.73 1.19 0.50
ta004 1.29 2.01 1.28 3.74 4.83 0.19 1.81 0.22 1.17 0.78 0.70 0.90 0.48

ta005 1.26 1.22 1.33 1.86 3.18 0.51 1.17 0.96 1.17 0.82 1.21 0.92 0.70

ta006 1.28 1.93 1.26 2.81 4.45 0.00 1.26 0.53 1.13 1.06 1.54 1.36 1.00

ta011 2.47 2.78 3.06 4.92 6.06 0.53 1.52 0.58 1.11 0.95 0.56 0.82 0.71

ta012 3.30 3.41 2.77 5.65 6.12 0.88 3.09 0.81 1.16 1.24 1.10 0.53 0.28
ta013 4.55 3.33 4.06 5.06 6.66 1.10 2.08 1.18 1.77 1.53 1.50 1.18 0.82
ta014 2.81 2.47 3.17 5.39 6.31 0.37 2.27 0.65 1.26 1.31 1.15 0.77 0.87

ta015 3.47 4.16 3.60 5.31 7.07 0.44 0.99 0.58 1.23 0.98 0.93 0.84 0.66

ta016 2.96 2.71 2.63 4.52 5.66 0.55 1.56 0.73 1.32 0.87 1.50 0.90 0.61

ta041 5.37 4.43 6.41 8.09 8.50 3.50 9.18 3.74 4.51 3.57 3.61 2.95 3.00

ta042 5.14 5.02 4.63 8.35 9.19 3.52 8.97 3.88 4.98 2.34 3.30 3.16 2.75

ta043 4.94 5.07 4.89 8.59 10.69 4.16 10.68 4.29 4.25 3.38 3.90 3.13 2.74
ta044 4.34 2.61 4.09 5.07 7.19 1.81 7.20 1.72 1.66 1.30 1.98 1.40 1.05
ta045 6.30 4.00 6.01 7.92 8.43 3.72 9.34 3.58 2.42 3.09 3.84 3.29 2.15
ta046 5.13 3.85 6.26 6.61 6.88 2.69 7.47 2.90 4.22 2.36 3.00 2.75 2.35
ta081 13.13 6.21 13.28 10.72 12.51 8.18 14.51 7.84 8.80 5.53 5.85 5.96 5.46
ta082 11.38 4.18 11.53 8.60 11.55 6.51 13.05 5.84 6.35 4.02 4.05 4.02 3.37
ta083 10.83 4.82 10.82 8.45 10.59 6.46 12.26 5.81 6.44 3.77 3.91 3.81 3.29
ta084 10.73 4.03 11.08 7.42 9.79 5.82 11.98 5.15 5.32 2.95 3.67 3.44 3.19

ta085 11.95 4.82 11.68 8.84 11.07 6.80 12.45 6.52 7.40 3.97 4.46 4.40 4.05

ta086 10.31 5.50 11.13 9.24 11.47 6.81 12.43 6.68 7.45 4.27 4.58 4.41 3.99

Avg. 5.38 3.51 5.45 6.01 7.34 2.76 6.26 2.77 3.26 2.26 2.49 2.24 1.90
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ratio (ER). Here, the parameters of the eSGGA were fixed experi-
mentally as follows: Pc¼0.9, Pm¼0.5, Interval¼7, Tc¼2, Tm¼4,
lf ¼ 0:1 and lc ¼ 0:1. Interval specifies the timing to refresh the
information in the probabilistic models.

We collect the result of average error ratio (ER) because it is
often used to evaluate the performance of algorithms applied to
deal with the PFSPs. The error ratio of a solution Xi generated by
an algorithm is calculated as Eq. (24). Xi is a solution generated by
an algorithm and CmaxðXiÞ is the makespan of the solution Xi. Ui is
the best known solution for Taillard instances which applied the
version in year 2005.

ERi ¼
CmaxðXiÞ�Ui

Ui
ð24Þ

SGGA, JEDA, PREDA, and eSGGA were compared with the nine
selected EDAs in Table 4. Through the 24 instances, the lowest
average error ratio in each instance was marked in boldface. The
results presented that eSGGA got 11 lowest average error ratio in
the 24 instances. EHBSAWT performed well in nine instances.
It indicated EHBSAWT was good at small-size problems. In terms
of large-size problems (50–100 jobs), eSGGA performed well
since eSGGA had 8 lowest average objective values out of the
12 instances. In addition to JEDA, PREDA, and eSGGA, they also
outperformed the permutation-oriented EDAs which employed
only one probabilistic model. Through the comparisons with EDAs
using one or two probabilistic models, EDAs could benefit from
integrate two probabilistic models. That is, the ensemble frame-
work of EDAs might be effective when we solve different
problems.
7. Conclusions

This paper investigated the concept of ensemble models in EDAs,
simultaneously considering two probabilistic models. The ensemble
models learn the different population characteristics which could
generate more accurate parental distributions for EDAs. Given the
ensemble models provide better individual information for EDAs, the
ensemble models may improve robustness of optimization at
minimum cost. In order to show how these two probabilistic models
were combined and validate the performance of ensemble models
in EDAs, we proposed eSGGA which applied both univariate and
bi-variate probabilistic models together. eSGGA could represent
better parental distribution than SGGA. Meanwhile, eSGGA also
inherited the characteristics of SGGA, including the solution estima-
tion during the crossover and mutation procedures. The evolutionary
process remained guided by the probabilistic models used in eSGGA.

eSGGA was compared with two EDAs which also employed
ensemble model approach, and some EDAs applying only one
model on two NP-Hard scheduling problems. The experimental
results showed that EDAs with ensemble models indeed per-
formed well in contrast to EDAs with only one model. Most
important of all, eSGGA outperformed other algorithms in the
literature. As a result, this paper has indicated a potential direction
to further improve the performance of EDAs through the frame-
work of ensemble model for the future research. Moreover,
because there is no theoretical analysis of the ensemble models
in EDAs, it might be studied and then to know the performance
improvement of using the ensemble model approach.
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