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a b s t r a c t

Maintaining population diversity throughout generations of Genetic Algorithms (GAs) is
key to avoid premature convergence. Redundant solutions is one cause for the decreasing
population diversity. To prevent the negative effect of redundant solutions, we propose a
framework that is based on the multi-parents crossover (MPX) operator embedded in
GAs. Because MPX generates diversified chromosomes with good solution quality, when
a pair of redundant solutions is found, we would generate a new offspring by using the
MPX to replace the redundant chromosome. Three schemes of MPX will be examined
and will be compared against some algorithms in literature when we solve the permuta-
tion flowshop scheduling problems, which is a strong NP-Hard sequencing problem. The
results indicate that our approach significantly improves the solution quality. This study
is useful for researchers who are trying to avoid premature convergence of evolutionary
algorithms by solving the sequencing problems.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Genetic Algorithms (GAs) have been widely used to solve many optimization problems because of their ease of use with
promising results. GAs maintain and evolve solutions through the selection and variation in each generation. Through the
generations of GAs, the population converges to better solution space while the population diversity is decreased in the same
time. Premature convergency is well-recognized for GAs [1–3], which causes the problem of staying at local optimal instead
of the global optimum. It is because that evolutionary algorithms attempt to converge to a optimal solution so that the solu-
tion space is narrowed down to a small region. Hence, it is a key to improve the population diversity when the population
diversity is poor. As a result, many researchers studied some approaches to avoid the premature convergence of GAs,
including:

1. Restart Strategy [4,5].
2. Immigrants [6–10].
3. Multiple crossover operators [11–16].
4. Adaptive Strategy [17–19].
. All rights reserved.
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No matter what kind of strategy is used, Jin and Branke [20] pointed out the maintenance population diversity throughout
the run is able to deal with the premature convergence. When the premature convergence is occurred, redundant solutions
(or called overlapping solutions) are the one of reasons which causes the poor population diversity [21,22]. Redundant solu-
tions usually occur in the evolutionary progress. Population diversity is decreased rapidly when redundant solutions are
accumulated continually in the population. Because of this problem, [21,22] suggested that overlapping solutions should
be removed in each run. It is proved that the removal of redundant solutions improves the performance. Other researches
[23–25] eliminate the similar parents by using the lowest fitness chromosome in the group. Although the replacement strat-
egies can promote population diversity, the disadvantage is the lowest fitness chromosome may not be selected in the next
run.

The aim of this paper is to propose a new framework which enhances the population diversity by using the removal of the
redundant solutions when we want to solve the NP-Hard sequencing problems. The major approaches in this framework are
to detect the redundant solutions first and then utilize a multi-parents crossover (MPX) operator to generate new chromo-
somes to replace the overlapping solutions. MPX stemmed from [26] who shown it is possible to use more than two parents
in crossover operation. A MPX operator can generate a more diversified population than two parents in sequencing problems
[27,28]. Besides the diversity concern, it is showed that MPX can lead the GAs to better performance [29,15] because the MPX
remain takes the advantage of the sequencing information in the population. Consequently, the new offsprings generated by
MPX maintain the population diversity without degrading the solution quality too much.

The rest of the paper is organized as follows: Section 2 describes the formulations of PFSPs. Section 3 shows the meth-
odology to generate diversified and good fitness solutions by using the MPX. Section 4 shows experiment results and discus-
sion. Section 5 is the conclusions of this research.
2. Problem statements

Flowshops provide a convenient means to model serial manufacturing processes. The flowshop is a processing facility
that consists of several machines on which jobs are processed in a sequential manner. In the permutation flowshop problem
(PFSP), all the jobs follow the same processing order on each of the machines. The PFSP to minimize the makespan can be
defined as follows:

Suppose there are n jobs and m machines. Let pði; jÞ; 1 6 i 6 n;1 6 j 6 m, be the processing time of job i on machine j and
p ¼ ðp1; . . . ;pnÞ be a job permutation (i.e., processing order of the jobs). Then the completion times Cðpi; jÞ are calculated as
follows:
Cðp1;1Þ ¼ pðp1;1Þ; ð1Þ

Cðpi;1Þ ¼ Cðpi�1;1Þ þ pðpi;1Þ for i ¼ 2; . . . ;n; ð2Þ

Cðp1; jÞ ¼ Cðp1; j� 1Þ þ pðp1; jÞ for j ¼ 2; . . . ;m; ð3Þ

Cðpi; jÞ ¼maxfCðpi�1; jÞ;Cðpi; j� 1Þg þ pðpi; jÞ for i ¼ 2; . . . ;n; j ¼ 2; . . . ;m: ð4Þ
The makespan is
CmaxðpÞ ¼ Cðpn;mÞ: ð5Þ
The objective is to find a permutation p� that minimizes CmaxðpÞ.
3. Methodology

The theme of this paper is to remove the effect of redundant solutions at each generation. In order to introduce diversified
chromosomes to the population, we illustrate a framework that will eliminate redundant solutions in GA by means of replac-
ing the redundant solutions through the application of multi-parents crossover operator. Section 3.1 will explain the detailed
procedures of the proposed framework. Since several MPX methods exist, the following Section 3.2 will explain the process
of generating diversified solutions by these MPX operators. Finally, an application will explain how different schemes can
generate an offspring.

3.1. A framework of removing overlapping solutions in GAs

It is natural that the similar chromosomes or the number of redundant solutions will increase during the evolutionary
progress that will enlarge the solution space or the objective space. As a result, various methods were proposed to replace
the overlapping solutions [21,22]. When an overlapping solution is detected, the next step is to generate a new solution in
replacement of the overlapping one. In this study, we employ a different approach from the past – by using the multi-parent
crossover operator embedded in GAs, to generate new solutions in replacement of redundant chromosomes during the



Fig. 1. A framework of removing overlapping solutions in GAs.
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evolutionary progress. The detailed procedure is depicted in Fig. 1, and below is a detailed description of the procedures of
the framework:

Step 1: Initialization
It is a common step of GAs. We initialize the population which consists a set of chromosomes. A chromosome rep-
resents a sequence for a problem we want to solve. The sequence is the processing sequence for the flowshop sched-
uling problem with integer numbers. Except that, the parameters of GAs are also initialized for the later on use.

Step 2: Fitness evaluation and selection operator
The chromosome fitness comes from the objective value of the sequence for the problem. Then, the selection oper-
ator choose better chromosomes to be survived. The binary tournament operator [30] is employed, which selects the
better chromosomes with lower objective values in this minimization problem.

Step 3: Crossover operator
This study applies the two-point crossover operator to mate two chromosomes which are randomly selected. There
is a crossover rate (Pc) which decides whether the crossover operator implements the mating of two chromosomes.
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Step 4: Mutation operator
A chromosome is decided to mutated if it is less than the mutation rate (Pm). A famous swap mutation operator is
used here. The approach is to generate two random cut-points of the chromosome, and then swap the genes
belonged to the two cut-points.

Step 5: Multi-parents crossover operator
A multi-parent crossover operator is designed to generate offsprings from numerous parents. In this step, the gen-
erated offsprings are stored in an external archive and could be used in the replacement stage. The size of the exter-
nal archive is equal to the population size. Then, all chromosomes are checked pair-wisely according to their own
sequence results. When a redundant solution is found during the pair-wise comparison, we sequentially draw a
chromosome from the external archive which has not been used and then replace the overlapping solution. Thus,
it guarantees the simplicity of the proposed framework. About the way to generate new offsprings by the MPX oper-
ators, we introduce three approaches in the following subsection.

3.2. Three schemes of multi-parents crossover operator

Like the two-parents crossover in most GAs, there are numerous MPX operators for sequencing problems. For example,
there are the gene reproduction mechanism and the multi-parent partially mapped crossover (MPPMX) proposed by Eiben
et al. [29] and Ting et al. [15] respectively. In Eiben et al. [29], it presented the effect of increasing the number of parents from
two to many. While it is observed that multi-parent crossovers can lead to better performance, the performance of those
algorithms seems to be dependent on certain kinds of problems.

After an extensive review of MPX operator, we have come to the conclusion that two major characteristics of MPX oper-
ator are different from traditional two-parents crossover: scanning order and competition rule. Scanning order selects a gene
from the candidate genes based on the order of each chromosome. Competition rule is a pre-determined rule by which that
allows offsprings to inherit genes from the selection of multiple parents. Although there are many MPX operators, we pick up
three schemes according to a distinct scanning order, which are Scanning Based Crossover (SBC), Adjacency Based Crossover
(ABC), and Diagonal Based Crossover (DBC). We employ the same count of occurrence competition rule under these methods.
The descriptions are as follows:

� SBC [29]: If the relation of genes is isolated in a chromosome, we can go through the sequence of the chromosome
from the beginning to the end, and take the value of every parents as candidates. Then the occurrence competition
rule is applied as selection criteria. The process is continued in the same manner until scanning to the last position.
In order to present the scheme clearly, we demonstrate the above mentioned SBC in Fig. 2. Each sub-figure determines
the selected gene from the beginning to the end.

� ABC [31]: If the relative position of genes in a chromosome or the sequence of composition in a gene fragment is
important (e.g., some chromosomes may share the same arcs in the traveling salesman problems), ABC would be suit-
able in this case. We interpret the ABC in the following way: the first gene value in the first parent is inherited in the
beginning and we use the gene value to update the marker; then separately, we search the adjacent gene value from
all chromosomes according to the marker value; the second gene value is inherited from competition and updates the
marker value; the process is continued in the same manner until all the assignments are done. In order to present the
scheme clearly, we demonstrate the above mentioned ABC in Fig. 3.

� DBC [32]: In sequencing problems, it is quite likely that there are many genes blocks within chromosomes. Some
researchers attempt to utilize this information in the mating progress. Diagonal Based Crossover (DBC) is a technique
which divides the genes into blocks by the number of parents and then forms a complete chromosome by the diagonal
rule. In order to present the scheme clearly, we demonstrate the above mentioned DBC in Fig. 4.
Fig. 2. The Example of illustration of Scanning Based Crossover (SBC).



Fig. 3. The Example of illustration of Adjacency Based Crossover (ABC).

Fig. 4. The Example of illustration of Diagonal Based Crossover (DBC).
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Finally, when these MPX operators work with the proposed framework, the three new algorithms are named as GA-ROSBC ,
GA-ROABC , and GA-RODBC where the RO is the abbreviation for removing overlapping solutions. According to the research
of Eiben et al. [29], which MPX operator would lead to better solution quality in the NP-Hard flowshop scheduling problem
is unknown, but through this research, we conducted extensive experiments to select a better MPX operator. In the next sec-
tion, we will compare our approach with some existing algorithms.

4. Computational results

We conducted experiments to evaluate the performance of the proposed framework. There are three multi-parents cross-
over operators which is used to replace the overlapping solutions. The experiments were tested on the PFSPs to minimize the
makespan problem. The testing 110 Taillard instances [33] are drawn from OR-Library1. There are four groups of job sizes: 20,
50, 100, and 200. In each job group, they have 5, 10, and 20 machines to process the jobs. The stopping criterion is to examine
500 � 2 � n solutions where n is the number of jobs. The parameters of GAs include the crossover rate, mutation rate, and pop-
ulation size which were determined in our preliminary experiments. They were set up as 0.6, 0.3, and 100, respectively. In addi-
tion, the number of parents is an important parameter because it influences the population diversity a lot. The setting of the
number of parents is also different in different problems, this parameter is also decided by Design-of-Experiment (DOE). In this
study, the number of parents was set up as 3 in later experiments.

To compare the proposed algorithm with others in literature, the average error ratio (Davg) is used to evaluate the perfor-
mance of all the algorithms. The error ratio of a solution Xi generated by an algorithm is calculated as follows:
1 <ht
Davg ¼
PR

i¼1
Heui�Besti

Besti
� 100

R
;

where Heui is the solution given by any of the R replications of the considered algorithms and Besti is the makespan value of
the best known or optimal solution provided by Taillard [33]. In all the experiments, we replicated each instance 30 times.

In order to determine which algorithm is statistically significant, ANOVA (Analysis of Variance) and Duncan grouping test
were employed to further distinguish the performance of the algorithms. ANOVA is a statistic method for testing the differ-
ence between/among the factors. Once there exists significant difference, it means the factor (input variable) will influence
tp://people.brunel.ac.uk/�mastjjb/jeb/info.html>.
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the output (i.e., the objective values or the response) [34]. As shown in ANOVA table, Source indicated the input factors of the
statistic model, DF is the degree of freedom, SS is sum of squares, F is the value of F-test, and Pr is the probability of the sta-
tistic significance [34].

Because the P-value of the factor Method is significant, we employ the Duncan grouping test to verify the pair-wise per-
formance. Duncan Table is the Duncan grouping test for all the compared algorithms. In this table, Mean is the average value
and N is the number of the observations. In the Duncan grouping test, if two algorithms share the same alphabet (i.e., they
are in the same group), there is no significant difference between them. Otherwise they are significantly different [34].
4.1. The performance of MPX operators in the proposed framework

Three MPX operators SBC, ABC, and DBC are likely to be utilized in the proposed framework to replace overlapping solu-
tions. We denote the three new algorithms as GA-ROSBC , GA-ROABC , and GA-RODBC . In Table 1, the factor method is very sig-
nificant, Duncan comparison is carried out in Table 2.

The Duncan comparison (in objective values) reveal that as soon as GA considers the removing overlapping solutions
(GA-ROSBC , GA-ROABC , and GA-RODBC), the performance is better than the GAs without replacing the overlapping solutions.
It could be very important for GAs to remove the redundant solutions because redundant solutions degrade the solution.
The reason might be the overlapping solutions decreasing the population diversity. We investigate this issue in the next
subsection.

When we compare the three schemes, they are different to each other in terms of solution quality. The GA-RODBC is the
best method among the three MPX operator. The second group is GA-ROABC and the last one is GA-ROSBC . However, all the
schemes outperform GAs without removing overlapping solutions.

Table 3 showed the statistical average error ratio (Davg) of the results and the statistical average cpu time (tavg) of the re-
sults obtained by GA-RODBC and GA tested on the 110 test instances from Taillard. Although GA-RODBC is better than GA in
term of solution quality, the GAs appears more efficient in terms of CPU time because GA-RODBC requires additional time to
detect redundant solutions and to replace the identical solutions generated by MPX operator.

Because GA-RODBC is the best framework when we apply different MPX operators, it is used to compare the algorithms in
literature. The detail result is presented in the next section.
4.2. Comparison with the relative performance of GAs

In this section, GA-RODBC is compared with Artificial Chromosome with Genetic Algorithms [35], Guided Memetic Algo-
rithm [36], and Mining Gene Genetic Algorithms [37]. These algorithms are discussed below:

� Artificial Chromosome with Genetic Algorithms (ACGA) [35]: This is our previously developed approach that combines an
probabilistic model with a standard genetic algorithm. By using the hybrid framework, both global and location informa-
tion is used.
� Guided Memetic Algorithm (GMA) [36]: Guided Memetic Algorithm. The probabilistic model is used to assist a local

search operator to reduce the computational overhead.
� Mining Gene Genetic Algorithms (MGGA) [37]: This algorithm is designed for treating machine scheduling problems. The

linear assignment algorithm and a greedy heuristic are embedded in MCGA.
Table 1
ANOVA results on the objective values of the flowshop scheduling problem produced by different schemes.

Source DF SS Mean square F value P value

Instances 109 1.53252E + 11 1405983543 1372051 <.0001
Method 3 581338.9917 193779.6639 189.1 <.0001
Instances⁄method 327 842601.9333 2576.764322 2.51 <.0001
Error 12760 13075568.57 1024.731079
Corrected total 13199 1.53267E + 11

Table 2
Duncan grouping on the objective values of the flowshop scheduling problem produced by different schemes.

Duncan grouping Mean N Method

A 5025.7012 3300 GA
B 5020.2206 3300 GA-ROSBC

C 5012.7876 3300 GA-ROABC

D 5008.4855 3300 GA-RODBC



Table 3
Performance evaluation of algorithms for makespan criterion.

n � m GA GA-RODBC

Dmin Davg Dmax tmin tavg tmax Dmin Davg Dmax tmin tavg tmax

20�5 0.25 1.32 3.36 0.07 0.08 0.10 0.24 1.15 2.20 0.17 0.20 0.21
20�10 0.71 2.38 5.05 0.09 0.10 0.13 0.59 1.93 3.69 0.20 0.22 0.24
20�20 0.56 1.95 3.53 0.13 0.15 0.16 0.35 1.53 3.25 0.24 0.26 0.28
50�5 0.20 0.83 1.88 0.47 0.49 0.51 0.06 0.63 1.46 1.10 1.13 1.17
50�10 1.40 3.38 5.60 0.60 0.62 0.65 1.19 2.72 4.62 1.22 1.25 1.28
50�20 3.03 4.64 6.55 0.89 0.92 0.94 2.78 4.15 5.63 1.48 1.51 1.54
100�5 0.16 0.55 1.15 2.59 2.65 2.71 0.11 0.45 0.89 5.67 5.78 5.88
100�10 0.94 2.05 3.39 3.02 3.07 3.11 0.72 1.69 3.02 6.04 6.19 6.29
100�20 2.61 4.10 5.82 3.93 4.05 4.16 2.32 3.60 5.13 7.03 7.11 7.20
200�10 0.44 1.11 1.96 17.47 17.77 18.13 0.24 0.77 1.49 33.18 35.71 37.92
200�20 1.80 2.89 4.18 21.57 21.74 21.94 1.53 2.59 3.74 34.12 37.42 39.64
Average 1.10 2.29 3.86 4.62 4.69 4.78 0.92 1.93 3.19 8.22 8.80 9.24

Table 4
Parameter settings of the implemented algorithms.

Method Settings

GA-RODBC Crossover rate = 0.6
Mutation rate = 0.3
Number of parents = 3

ACGA Starting generation = 0.7⁄ (total generations)
Interval = 0.1⁄ (total generations)
Crossover rate = 0.6
Mutation rate = 0.3
k ¼ 0:5

GMA Crossover rate = 0.6
Mutation rate = 0.3
k ¼ 0:5

MGGA Interval: 0.05⁄(total generations)
Crossover rate = 0.9
Mutation rate = 0.5

Common The elitist solutions=10%

terminational criterion=500�m� n
Population size = 100

Table 5
ANOVA results on the objective values of PFSP produced by different algorithms.

Source DF SS Mean square F value P value

Instances 109 1.54256E + 11 1415188569 1511088 <.0001
Method 3 1421018.101 473672.7005 505.77 <.0001
Instances⁄method 327 7547203.024 23080.13157 24.64 <.0001
Error 12760 11950201.37 936.5361573
Corrected total 13199 1.54276E + 11
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For the performance evaluation purpose, the parameter settings of the algorithms are decided by DOE to analysis the effi-
ciency of single factor and interaction with another parameters. There were given in Table 4.

The ANOVA results are presented in Table 5 where the factor method is significant. We thus continue to evaluate the dif-
ferences of the algorithms. It is evident from Table 6 that four algorithms were significantly different and GA-RODBC per-
formed significantly better than others in term of solution quality. Except for the information of ANOVA and Duncan
comparisons, we supply the statistic results of these algorithms to deal with the last 50 Taillard instances in Table 7. From
Table 7, it clearly showed that GA-RODBC outperformed other GA-based algorithms. Thus, we may conclude that the removing
redundant solutions together with a MPX operator is beneficial for the GAs.

4.3. Discussion

We take one more step to understand why the removing redundant solution is effective. We examine the population
diversity of proposed algorithm GA-RODBC and GA. The diversity metric is shown in Eq. 7. The foundation of the diversity



Table 6
Duncan grouping on the objective values of PFSP produced by different algorithms.

Duncan grouping Mean N Method

A 5035.0624 3300 GMA
B 5016.3655 3300 MGGA
C 5011.1815 3300 ACGA
D 5008.4855 3300 GA-RODBC

Table 7
Partial Taillard flowshop results.

Instance ACGA GMA MGGA GA GA-RODBC

Davg Davg Davg Dmin Davg Dmax Dmin Davg Dmax

ta061 0.25 0.20 0.04 0.04 0.30 0.62 0.00 0.09 0.62
ta062 0.34 0.32 0.29 0.19 0.33 0.83 0.17 0.39 0.80
ta063 0.77 0.73 0.78 0.58 0.84 1.45 0.35 0.84 1.18
ta064 0.32 0.30 0.44 0.10 0.32 0.52 0.00 0.28 0.52
ta065 0.47 0.23 0.12 0.10 0.58 1.89 0.06 0.43 1.16
ta066 0.26 0.18 0.19 0.04 0.27 0.84 0.00 0.24 0.51
ta067 0.77 0.73 1.09 0.25 0.90 1.51 0.25 0.71 1.20
ta068 0.52 0.50 0.20 0.00 0.60 1.53 0.24 0.56 0.74
ta069 0.58 0.57 0.57 0.00 0.68 1.28 �0.11 0.55 1.10
ta070 0.48 0.39 0.44 0.26 0.65 1.09 0.11 0.44 1.09
ta071 2.06 2.31 1.71 0.85 2.29 4.09 0.42 1.61 3.17
ta072 1.61 1.84 0.90 0.60 1.75 2.97 0.58 1.56 2.91
ta073 1.55 1.74 1.65 0.70 1.77 2.48 0.21 1.78 3.03
ta074 2.46 2.74 2.57 1.48 2.55 3.69 0.96 2.28 3.49
ta075 2.51 2.95 1.80 1.84 3.25 4.44 1.55 2.88 4.68
ta076 1.52 1.68 0.76 0.34 1.68 2.47 0.38 1.15 2.98
ta077 1.92 2.01 2.07 1.25 2.25 3.27 1.11 1.96 2.70
ta078 1.48 1.87 1.39 1.15 2.07 3.87 0.96 1.56 2.73
ta079 1.37 1.52 1.26 0.83 1.52 3.09 0.70 1.36 2.51
ta080 1.03 0.97 0.93 0.36 1.37 3.57 0.36 0.81 1.98
ta081 3.46 4.53 3.09 2.44 3.66 5.31 2.62 3.65 5.00
ta082 3.56 4.55 2.67 1.85 3.83 5.74 1.80 3.35 5.39
ta083 3.59 4.56 3.88 2.41 3.92 5.95 2.15 3.42 4.57
ta084 3.72 4.65 2.27 2.62 4.10 5.99 2.81 3.69 5.15
ta085 3.94 4.88 3.32 2.83 4.24 6.43 2.90 3.93 5.20
ta086 3.30 4.35 2.67 2.39 4.07 5.61 2.14 3.56 5.60
ta087 4.35 5.18 2.74 3.46 4.72 6.24 2.50 3.89 6.10
ta088 4.44 5.16 3.74 3.18 4.57 6.23 2.29 4.11 5.79
ta089 3.90 4.95 3.75 2.65 4.35 5.93 2.32 3.75 4.53
ta090 3.37 4.00 3.38 2.32 3.56 4.78 1.70 2.67 3.99
ta091 0.50 0.64 0.20 0.22 0.63 1.46 0.21 0.55 1.39
ta092 0.91 1.31 1.21 0.60 1.10 1.71 0.28 0.81 1.64
ta093 0.63 0.75 1.44 0.37 0.99 1.61 0.20 0.60 1.06
ta094 0.44 0.43 0.66 0.03 0.46 0.77 �0.07 0.51 1.11
ta095 1.45 1.68 1.28 0.61 1.60 2.91 0.26 0.85 1.40
ta096 1.04 1.51 1.12 0.31 1.22 2.64 0.20 0.71 1.83
ta097 1.11 1.33 0.87 0.86 1.43 2.50 0.74 1.18 1.76
ta098 0.73 0.86 0.94 0.19 0.97 1.69 0.06 0.63 1.58
ta099 1.10 1.37 0.78 0.79 1.41 2.31 0.24 0.84 1.46
ta100 0.93 1.13 0.67 0.46 1.27 1.99 0.28 1.01 1.69
ta101 2.41 3.48 3.66 1.65 2.71 4.08 1.47 2.34 3.14
ta102 2.73 3.77 4.03 2.12 2.96 3.67 1.84 2.71 3.76
ta103 3.20 4.06 4.39 2.18 3.16 4.53 1.79 2.97 4.00
ta104 2.28 3.08 3.55 1.05 2.60 4.29 1.23 2.21 3.93
ta105 2.68 3.48 3.74 1.77 2.88 4.69 1.63 2.69 3.75
ta106 3.10 4.20 4.52 1.89 3.34 4.39 1.48 2.98 4.06
ta107 2.72 3.40 3.82 1.64 2.55 3.84 1.58 2.37 3.63
ta108 2.74 3.30 3.79 1.82 2.89 4.12 1.34 2.57 3.25
ta109 2.69 3.57 3.92 1.61 2.83 4.30 1.31 2.33 4.04
ta110 2.93 3.75 4.10 2.26 2.94 3.93 1.67 2.68 3.81
Average 1.92 2.35 1.99 1.19 2.14 3.30 0.98 1.82 2.85
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Fig. 5. Diversity analysis of the algorithms at instance ta056.
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metric is based on the total hamming distance which sums the total distance among all solutions. Because we want to let the
diversity value from 0 to 1, the total hamming distance is divided by the maximum estimated difference shown in Eq. (6).
The parameter x and y represent the two chromosomes in a population P. The parameter k is chromosome length, and N is
the size of population P. The ðkþ 1Þ � 0:4 � k estimates the max difference of a solution. The complete comparisons is
N � ðN þ 1Þ=2, here N2=2 is the simplified meaning to represent it. Then, the maximum estimated difference is
ðkþ 1Þ � 0:4 � k � N2=2. The diversity measure is obtained in Eq. (7).
Hamðx; yÞ ¼
X

i

jsgnðx½i� � y½i�Þj; ð6Þ
Diversity ¼
XN

i¼1

XN

j¼iþ1

HamðP½i�; P½j�Þ
" #,

½ðkþ 1Þ � 0:4 � k � N2=2�: ð7Þ
We draw the instance ta056 (it is a scheduling problem of 50 jobs and 20 machines) and each algorithm is replicated 30
times. Fig. 5 depicts the diversity diagram against the generation of the compared algorithms. When GA does not eliminate
the overlapping solutions, the diversity is decreased rapidly and the population diversity is poor after the generation 100.
Because GA-RODBC maintains good population diversity in a certain level, the algorithm has better chance to improve the
solution quality. It might be the reason why GA-RODBC is better than other GA-based algorithms.
5. Conclusion

The multi-parents crossover operator is one of the approaches that promotes population diversity in evolution algo-
rithms. In this research, the multi-parent crossover was not substituted for the two-parent crossover operator. Instead, an
entirely new framework is proposed for solving the overlapping solutions issue which degrades population diversity to a
great extent. Under our approach, when a redundant solution is found, a new solution generated by MPX operator replaces
the redundant solutions. We have proven that the removal of redundant solutions is significant in increasing diversity and
enhancing algorithm performance. And with this method, our research presents an interesting framework to improve pop-
ulation diversity.

First, to better describe the multi-parents crossover operator, the MPX operator is applied to produce brand-new and
promising chromosomes to replace redundant individuals in GAs. This method takes advantage of useful sequencing infor-
mation in the population. MPX operator is able to generate diversified species without losing too much solution quality. Sec-
ondly, several multi-parents crossover operators are available to be used in the proposed framework. Experiments indicate
that no matter what kinds of MPX operator is being used in the framework, the framework outperforms the GAs significantly.
That said, this could be a good method for other evolutionary algorithms to improve their own performances. Finally, the
benefit of removing redundant solutions is that while it provides sufficient diversity, it does not create an excessive diversity
effect. We know if the population diversity is too high, GAs cannot be converged. Thus, the proposed framework provides
moderate diversity during the evolutionary progress.
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For the future development of multi-parent crossover embedded in frameworks for removing redundant solutions, our
proposed framework is not limited to PFSPs. In addition, although the Diagonal Based Crossover operator may lead to better
solution quality when used to replace overlapping solutions, this method does not guarantee better performance in other
sequencing problems. We need to validate different MPX operators when we solve for new sequencing problems. Finally,
due to the nature of MPX operators, the framework could be extended to solve other problems, such as multi-objective prob-
lems, uncertain environments, and dynamic optimization problems. Moreover, these schemes can be easily embedded in
other advanced GAs, such as ACGA [35], Self-Guided GA [36,38], dominance properties with GAs [39], and Hybrid Heuristic
method with GA [40]. MPX could be integrated with the above mentioned algorithms. Therefore, depending on the nature of
the issues, we expect MPX operator to be used in different fields to introduce diversified solutions.
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