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Abstract

According to previous research of Chang et al. [Chang, P. C., Chen, S. H., & Lin, K. L. (2005b). Two phase sub-population genetic
algorithm for parallel machine scheduling problem. Expert Systems with Applications, 29(3), 705–712], the sub-population genetic algo-
rithm (SPGA) is effective in solving multiobjective scheduling problems. Based on the pioneer efforts, this research proposes a mining
gene structure technique integrated with the SPGA. The mining problem of elite chromosomes is formulated as a linear assignment prob-
lem and a greedy heuristic using threshold to eliminate redundant information. As a result, artificial chromosomes are created according
to this gene mining procedure and these artificial chromosomes will be reintroduced into the evolution process to improve the efficiency
and solution quality of the procedure. In addition, to further increase the quality of the artificial chromosome, a dynamic threshold pro-
cedure is developed and the flowshop scheduling problems are applied as a benchmark problem for testing the developed algorithm.
Extensive tests in the flow-shop scheduling problem show that the proposed approach can improve the performance of SPGA
significantly.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Genetic algorithms; Multiobjective optimization; Pareto optimum solution; Minging gene structures; Scheduling problem
1. Introduction

In the operations research literature, flowshop schedul-
ing is one of the most well-known problems in the area
of scheduling. Flowshops are useful tools in modeling man-
ufacturing processes. A permutation flowshop is a job pro-
cessing facility which consists of several machines and jobs
to be processed on the machines. In a permutation flow-
shop all jobs follow the same machine or processing order
and job processing is not interrupted once started. Our
objective is to find a sequence for the jobs so that the make-
span or the completion time is a minimum.

Various approaches to this problem have been proposed
since the pioneering work of Johnson (Affenzeller, 2002).
Genetic Algorithms have been applied (Davis, 1991; Gold-
berg, 1989; Holland, 1975) to combinatorial optimization
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problems such as the traveling salesman problem (Jog,
Suh, & Gucht, 1989; Starkweather, McDaniel, Whitley,
Mathias, & Whitley, 1991; Ulder, 1991), and scheduling
problems (see for example, Fox & McMahon, 1991; Ishibu-
chi, Yamamoto, Murata, & Tanaka, 1994). A simulated
annealing (SA) approach to the flowshop problem was pro-
posed by Osman and Potts (1989) and Ogbu and Smith
(1990). This approach was shown to produce high quality
solutions. The performance of these heuristics has been
measured on a set of 120 benchmark instances of the PFSP
proposed in Taillard (1991). A GA for flowshop scheduling
was proposed by Reeves (1995), which was then tested on
several categories of problems with time gradients and
job correlations and some hard test problems. GA was
overall seen to produce results comparable to SA for the
flowshop sequencing problem for most types and sizes of
problems. Further, GA was shown to perform relatively
better for large problems and reaches near-optimal solu-
tions earlier. Both GA and SA outperform other heuristics.
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2. Approaches in multiobjective scheduling problems

The flow shop scheduling problem is a NP-Hard
problem, which all algorithms cannot solve it in a polyno-
mial time. When the problem size is larger than 50, it is
time-consuming to solve by exact algorithms, such as
Branch-and-Bound algorithm and dynamic programming.
Therefore, researchers developed some metaheuristics to
solve it. Moreover, if the multiple objectives of a problem
are considered, it becomes more complex. Therefore, recent
development in evolutionary multiobjective optimization
provides interesting results as discussed by Deb, Amrit,
Sameer, and Meyarivan (2002) Zitzler, Laumanns, and
Bleuler (2004). In addition, some sub-population-like
approaches also can be found in related literatures, such
as segregative genetic algorithms (Affenzeller, 2002), multi-
sexual genetic algorithm (Lis & Eiben, 1997), multipopula-
tion genetic algorithm (Cochran, Horng, & Fowler, 2003),
hierarchical fair competition model (Hu, Goodman, Seo,
Fan, & Rosenberg, 2005), MO particle swam optimization
(Coello, Pulido, & Lechuga, 2004; Mostaghim & Teich,
2004) and two phases sub-population GA (Chang, Chen,
& Lin, 2005b). Therefore, different EMO algorithms are
proposed and the efficiency and solution quality are greatly
improved.

Since Schaffer (1985) proposed VEGA (vector evaluated
genetic algorithm) in 1985, the application of GAs in solv-
ing multiobjective problems has been developed and it
bloomed in the mid 1990s. The research introduces two
of the most famous and well-known approaches of GAs:
SPEA-II and NSGA-II in the following, and because the
proposed algorithm is established based on SPGA, it will
be described as well.

2.1. Strength Pareto evolutionary algorithm-II (SPEA-II)

SPEA-II was proposed by Zitzler, Laumanns, and Thi-
ele (2001) which is improved from SPEA (Zitzler & Thiele,
1999). There are three main differences between SPEA-II
and SPEA:

1. Fitness assignment: In SPEA-II, each individual has a
strength value calculated. The calculation model of
SPEA-II for fitness is not only based on the strength
value, but also on the density degree.

2. Density estimation: In SPEA-II, besides the strength
value, each individual has its own rk

i , which is called
the value of density in our study. The calculation of rk

i

is to sort first the values of all objectives; each individual
rk

i is equal to the sum of the value difference between
each objective value and its kth neatest neighbor. The
fitness value equals the strength value plus the density
degree.

3. Archive truncation method: In SPEA-II, the size the
outside storage file is fixed, and the individual crossover
and mutation process can only take place in the storage
file.
2.2. Non-dominated sorting genetic algorithm-II (NSGA-II)

NSGA-II was proposed by Deb et al. (2002). To
improve the fitness assignment of NSGA, it adopts a
crowding distance to measure the density of individuals
in solution space. The algorithm of NSGA-II can be
divided in three parts:

1. Non-dominated sorting: N populations and their N sub-
populations first compose of a 2N population and then
they are sorted according to each individual’s domina-
tion situation.

2. Crowding distance computation: Crowding distance com-
putation is used to decrease the competitive ability of
the non-dominated solutions with more crowding
distance.

3. Crowded computation operator �n: This operator is used
as a selection tool. The selection is based on two com-
parison rules: (1) the smaller level the individual belongs
to, the better the solution is; (2) an individual with
greater crowding distance has better solution because
the area it belongs to is less crowded.

2.3. Sub-population genetic algorithm (SPGA)

SPGA was proposed by Chang et al. (2005b). In this
approach, the original population is divided into several
sub-populations which will be assigned with different
weights to search optimal solutions in different directions.
This way can consider both the expanding and converging
natures of the solutions. There are three main characteris-
tics of SPGA:

1. The original population is divided into numerous small
sub-populations which are designed to explore the solu-
tion space; each sub-population is independent and
unrelated to each other.

2. The multiple objectives are scalarized into single objec-
tive and each sub-population is assigned with different
weight, which stands for different searching direction.
An outside storage file is set up to record the non-dom-
inated solutions appeared during the searching process.
Certain individuals are chosen from the file in the pro-
cess of crossover.

3. Replacement process has to be converged after certain
generations; that is, the sub-populations will replace
the original populations only when they are superior
to the original ones.

The searching procedure of SPGA is depicted as shown
in Fig. 2.1.

2.4. Mining gene structure (MGS)

There is a lot of useful information hidden in the evolve-
ment process of GAs and each produced solution also



Fig. 2.1. The framework of SPGA (Chang et al., 2005b).

764 P.-C. Chang et al. / Expert Systems with Applications 33 (2007) 762–771
reveals certain useful signals which can be used for further
applications; for example, Chang, Wang, and Liu (2005a)
proposed a methodology to improve GAs by mining gene
structures which was used to solve traveling salesman
problem, (TSP). This study will integrate mining gene
structures with SPGA such that the convergence of solu-
tions can be speeded and solutions with better quality
can be obtained. A ‘‘fabrication operator’’ is proposed to
generate a new set of chromosomes by collecting useful
information from elite chromosomes generated in previous
generations. For each chromosome, a gene represents the
job and the sequence the position each job is assigned.
The number of times of the job showing up at each differ-
ent position was counted and recorded in a ‘‘dominance
matrix’’. This process was named ‘‘voting’’. The element
Mij in the matrix represented the times that job i appeared
at position j. Thus a dominance matrix generated from the
chromosome base is formed. According to this dominance
matrix, an ‘‘artificial chromosome’’ can be generated by the
following steps:
Population

2 1 5 3 4

2 3 1 4 5Parent 1

Parent 2

5 2 4 3 1

3 1 5 4 2Parent 3

Parent 4

4 1 2 3 5Parent 5

2 1 4 3 5

2 1 5 3 4

Fabricated Chromosomes

Voting

Randomly
non-domin

Fig. 2.2. The working procedure of fabric
Let

E the elite set, E 2 {p1,p2, . . . ,pi}
Pos the position of a job
size the size of the E

length the length of chromosome
j the number of job
Mj,Pos the value of the dominance matrix
A the set of jobs has to be assigned
A
0

the set of assigned-jobs
B
0

the set of weed-out jobs
jVlj the highest number of vote of the lth sequence =

MAX(Vkl), "k

jClj the job with the highest number of vote of the lth
sequence

Processes of generate fabricated chromosomes:

Step 0. Set i = 1.
Step 1. Set p = E(i) and Pos = 1.
Step 2. j = p(Pos), Mj,Pos = Mj,Pos + 1.
Step 3. If Pos small than the length, then Pos++, go to

Step 2.

Else if i small than size, then i++, go to Step 1.
Else go to Step 4.

Step 4. jVlj is the maximum of MJP.
0

If there is any other l where j V l j¼ V l0j j, go to step
3; otherwise, go to step 2.

Step 5. Remove job jClj from A to A
0
, and let it to hold the

lth sequence in fabricated chromosomes. Then, go
to step 4.

Step 6. Remove jobs jClj and Cl0j j from A to B
0
. Then, go

to step 4.
Step 7. If A = /, then, go to step 5; otherwise, go back to

step 1.
Step 8. Randomly assign the jobs in B

0
to the unassigned

sequences in fabricated chromosomes.
Sequence

Jo
b

1 2 3 4 5

1 0 3 1 0 1

2 2 1 1 0 1

3 1 1 0 3 0

4 1 0 1 2 1

5 1 0 2 0 2

2 1 ? 3 ?

1 23

Dominance matrix (Fabricating pool)

 assign 
ated city

'A :

ation operator (Chang et al., 2005a).



Production Sequence

Jo
b

1 2 3 4 5

1 0.1085 1.7340 1.1773

2 1 0.1085 3.1427 2.5957 1.7340

3 2.0874 1.4184 0.1085 1.3036 2.1552

4 3.0485 1.9101 2.0012 1.2637 1.3978

5 2.8163 0.9101 2.7448 0.1085

The result of considering the threshold effect

6

1

2.4588

1.4184

0

6 1.9791 1.3036 1 1.3978 2.1959

3.1427 3.8773

3.9665

3.1633

4.4600

Fig. 3.1. Voting results (by having considered the threshold effect).
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The following is a simple example for the fabrication
operator as shown in Fig. 2.2, i.e., a simple example for
th fabrication operator.

This research extends SPGA (Chang et al., 2005b) by
integrating the mining gene structure approach with
SPGA, which becomes the so-called MGSPGA (mining
gene structures on sub-population genetic algorithm), a
algorithm with both natures of convergence and diffusivity.
Detailed development of the integrated approach will be
described in the next section.

3. Methodology

A new GA is developed in this research which is called
mining gene structures on sub-population genetic algo-
rithm (MGSPGA). The method is proposed to solve flow-
shop scheduling problems and will be compared with
SPGA, NSGA-II and SPEA-II. Through literature reviews,
we find that SPGA has very good diffusivity when solving
multiobjective problems; however, as for convergence,
there still remains room for improvement. Thus, the
research tries to strengthen the solution convergence of
SPGA by mining gene structures. Except for the original
mining gene structures (MGS) (Chang et al., 2005a), there
are two more methods proposed – weighting minging gene
structures (WMGS) and threshold mining gene structures
(TMGS); these three methods are later integrated with
SPGA. This section is organized as the following: the three
approaches of MGS are first introduced, and then the steps
of solutions are depicted. Finally, the evaluation approach
to use for the comparison of each algorithm is introduced.

3.1. Approaches of mining gene structures

3.1.1. Mining gene structures (MGS)

Mining gene structures was proposed by Chang et al.
(2005a) who used statistic sorting of elite chromosomes
to find better genetic sorts for the making of artificial chro-
mosomes. When collecting genetic information, the sorting
of each elite chromosome will be recorded in a dominance
matrix. After several generations, the artificial chromo-
somes will be generated from voting results. After the first
set of artificial chromosomes is generated, all values of the
matrix return to zero for re-voting process. The same
approach will be integrated with SPGA and applied to
solve multiobjective scheduling problems.

3.1.2. Weighting mining gene structures (WMGS)

In the MGS proposed by Chang et al. (2005a), only the
elite solutions have the vote power, and the power of each
elite solution is equally effective. If this voting model is
applied to SPGA, there will have two problems:

1. The elite solutions of SPGA belong to non-dominated
solutions of its group and when the number of solutions
is not sufficient, the information collected is less
complete.
2. The original votes of each elite solution have the same
effectiveness, which makes it hard to distinguish which
one is superior/inferior.

Based on above two problems, the research proposed a
weighting mining gene structures method to overcome this
situation. This method differs from the original MGS in
that it can give different weights according to the goodness
or badness of each solution; that is, each voting solution
has different effectiveness; information provided by a better
solution has relatively higher value for reference, which will
be assigned higher weights. Hence, more solutions can be
accepted for voting. The procedure of WMGS is very sim-
ilar to MGS introduced in Section 2.4; the only difference is
in step 2 and it will be substituted by weighting vote, and
the calculation of weighting vote is as follows:

Mj;Pos ¼ Mj;Pos þ ðwn1 � f ðx1Þ þ wn2 � f ðx2ÞÞ ð3:1Þ
Mj,Pos the voting number of the chromosome
wn1 Æ f(x1) the fitness function value of the normalization

of objective 1
wn2 Æ f(x2) the fitness function value of the normalization

of objective 2

3.1.3. Threshold mining gene structures (TMGS)

When creating the artificial solutions by WMGS,
normally the processing order of each objective can be
ensured; therefore, the sorting of the produced chromo-
some should be exactly identical, which causes a waste of
searching resources. Thus, a threshold value is set up to
limit the number of times each gene showing up in each
position and the rest can be assigned in a random way. A
variety of artificial chromosomes combination can be
obtained by this way. The threshold setting has the follow-
ing two advantages:

1. To avoid the waste of searching resources.
2. To have similar effectiveness to area searching.

A simple example is given to explain the procedure of
TMGS. The voting result after the weights being assigned
is shown in Fig. 3.1. It is supposed that the threshold value



The information of artificial chromosome

? 5 1 ? 6
Artificial

chromosome 3

Sequence Cmax T max

4 5 1 2 6Random 1 3 596 0

2 5 1 4 6Random 2 3 697 112

To randomly assign

Fig. 3.2. Generation of artificial chromosomes.
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is set as 2, which means the weight assignment stops when
the unsorted sequence is smaller than or equals 2. The same
assignment procedure is carried out for the sorting of man-
ufacturing sequences until the completion of all jobs to be
sorted or the threshold value to be achieved. Hence the
sorting result is: ?! 5! 1! ?! 6! 3, with two posi-
tions left for random sorting. Fig. 3.2 shows two possibili-
ties of the sorting information released from artificial
chromosomes.

3.2. Mining gene on sub-population genetic algorithm

(MGSPGA)

3.2.1. Characteristics of MGSPGA
In this algorithm, the original population is divided in

several sub-populations to search solutions separately. By
assigning different weights, each sub-population can focus
on its own searching in a specific small area. This way
can help to strengthen the solution diffusivity effectively.

1. Multiple objectives are transformed into a single objec-
tive function by using weighting model. The solution
space can be divided into several small areas according
to the assigned weights. The weighting combination of
each sub-population is (wn1,wn2), in which n stands for
the ordinal number of sub-populations. Besides, the
concept of SPEA-II is used to record the non-dominated
solutions appearing in the searching process in an out-
side storage file and these solutions later become the elite
solutions by elitist mechanism.

2. Mining gene structure is used to extract useful informa-
tion from chromosomes. In the process of mutation, a
set of artificial chromosomes is made to mutate simulta-
neously. Normally artificial chromosomes will have
good sorting results, which is beneficial for GAs to
search better solution spaces and find better solutions.
The artificial chromosomes can help to strengthen the
solution convergence effectively.

3. After a certain number of generations, sub-populations
are enforced to converge; the sub-populations can
replace their parent population only if they are superior
to the original population.
3.2.2. The procedure of MGSPGA

The procedure of MGSPGA is depicted as shown in
Fig. 3.3. The parameters of the algorithm N, ns, n, and iter-
ation are number of chromosomes, number of sub-popula-
tions, number of individuals in each sub-population, and
number of iterations (number of solutions should be exam-
ined/ns) respectively. The methods for selection, crossover,
mutation, objective function calculation, fitness assign-
ment, and weight assignment are the same as defined by
Chang et al. (2005b), which are binary tournament, two
points crossover, shift mutation, total makespan and total
tardiness time, and scalarized weight assignment respec-
tively. Voting is to record the solution information in the
dominance matrix. There are three methods included in
fabrication operator: MGS, WMGS and TMGS. The
detailed procedure is shown as in Section 2.4. The encoding
techniques of chromosomes are sequential type for the
scheduling problems. The procedure of the MGSPGA is
explained as the following:

(Ns is the number of sub-populations; g is the number of
generations; k is the interval number of artificial chromo-
somes’ generations.)
1.
 Initialize ()

2.
 DividePopulation()

3.
 AssignWeightToEachObjectives()

4.
 counter 0

5.
 while counter < Iteration do
6.
 for i = 1 to ns do

7.
 FindPareto(i)

8.
 Fitness(i)

9.
 Elitism(i)

10.
 Voting(i)

11.
 Selection(i)

12.
 Fabrication(i)

13.
 Crossover(i)

14.
 Mutation(i)

15.
 Replacement(i)

16.
 end for
17.
 counter counter + 1

18.
 end while
19.
 counter 0
Compared with SPGA, this approach is different in that
it has the mechanism of creating artificial chromosomes
and the sorting information of chromosomes in each muta-
tion is recorded for the use of creating artificial chromo-
somes and placing them in the mating pool for evolution.
3.3. Performance measure

3.3.1. By D1R value

D1R is a metric which considers the convergence and
diversity simultaneously (Knowles & Corne, 2002) and it
is adopted in this research to evaluate the solution quality.
Its main concept is to calculate the shortest distance
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Fig. 3.3. The algorithm procedure of MGSPGA.
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between each solution in the Pareto-Solution set and the set
to be compared with, and then calculate the mean value.
The smaller D1R is the better. The procedure is explained
as follows:

Aj is the number of the sets to be compared, and the
j = 1,2, . . . ,J. Therefore, if there are J sets to be compared,
then the D1R value of each set has to be calculated. Z* is
the referred or real set of the Pareto Solution. The formula
of D1R is as follows:

D1RðAjÞ ¼
1

jZ�j
X
y2Z�

minfdxy jx 2 Ajg ð3:2Þ

dxy is the distance of each solution in set Aj and the formula
is
dxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f �1 ðyÞ � f1ðxÞð Þ þ � � � þ f �N ðyÞ � fN ðxÞð Þ

q
ð3:3Þ

In formula (3.3), N is the function number of the objec-
tives; in this research, N = 2. The distance is not computed
directly from the calculation of the objective value; instead,
dxy is computed indirectly after normalization. The nor-
malization procedure is to convert all objective values be-
tween 0 and 100.

3.3.2. Non-dominated solution numbers and completion time

When comparing the advantages and disadvantages of
different algorithms, this research also compares the num-
ber of the final non-dominated solutions of each algorithm.
The completion time of each method is provided as well.



Table 4.3
The ANOVA result of the experiment
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The method with the shortest completion time to find the
non-dominated solution number is the best because if the
complexity of a case becomes higher, saving the time for
decision making can help the decision maker to respond
the current problems quickly.

4. Experimental results and analysis

The research uses the flowshop scheduling case study by
Ishibuchi, Yoshida, and Murata (2003) in which four types
were included in the bi-objective flow-shop problems; they
were 20 jobs in 20 machines, 40 jobs in 20 machines, 60
jobs in 20 machines and 80 jobs in 20 machines. The pro-
cessing and completion time are the same as used in Ishibu-
chi et al.’s (2003). The experimental results will be
compared with those of SPGA, NSGA-II and SPEA-II.

4.1. Parameter design

4.1.1. Common parameters

The approach proposed in this research and those to be
compared have certain common parameters, for example,
the number of original population, crossover rate, muta-
tion rate and termination condition, etc. After simple
experimental design, the setting of common parameters is
listed as shown in Table 4.1.

4.1.2. Individual parameters

MGSPGA differs from SPGA in that it has two more
parameters to be considered. In MGSPGA, because of
the added MGS, the number of created artificial chromo-
somes and interval generation number of the solutions gen-
erated have to be set. Besides, when using TMGS, one
more threshold value has to be set, this is set to be 4 after
experiments. Three factors are tested for the experimental
design: four processing levels in the number of artificial
chromosomes, three processing levels in the interval gener-
ation number and three approaches of MGS. The combi-
nation sample problems of four jobs and the number of
Table 4.1
Parameter setting

Parameter Value

Population size 200
Crossover rate 0.9
Mutation rate 0.6
Number of sub-populations 20
Stop criterion To evaluate 1,000,000 solutions

Table 4.2
The experimental factors

Factor

The number of generation to produce artificial chromosome (Int)
The number of chromosome to be generated (Qua)
Mining gene methods (Met)
machines are also tested. The processing level of each fac-
tor is shown in Table 4.2.

After combining the 3-genes MGS approach with SPGA
to be MGSPGA, the parameter combination 3 · 4 · 3 = 36
is used for experiments and we find that only D1R has sig-
nificant impact on MGSPGA (see Table 4.3). According to
Table 4.1, we can find that the effectiveness of TMGS is the
best, WMGS the second, the MGS the last. According to
Table 4.2, there is no such reciprocal function between
these three factors. Since both interval generation number
and artificial chromosome number have no significant
impacts on the experimental results, it is no need to set
them. Thus, in the following tests, the parameters are set
as 20 artificial chromosomes and 40 interval generations.
TMGS, the approach with the better effectiveness, is used
to be compared with the rest algorithms. According to
the main effect plot at Fig. 4.1 and the interaction plot at
Fig. 4.2, the approach with the better effectiveness is
applied for the comparisons with other algorithms.

4.2. Experimental results

When testing flowshop scheduling problems, the schedul-
ing performance measure index is minimum with maximum
completion time and maximum with minimum completion
time. Four different types are tested. Among them, the termi-
nation condition for different algorithms is the same: when
the total searching number equals one million, it stops
searching. The following is the results of 30 times testing.

4.2.1. 20 Jobs in 20 machines

The testing result of the sample problem of 20 jobs in 20
machines is depicted in Table 4.4. For the column of D1R,
Min is the minimum value after 30 times testing under the
parameter combination set as mentioned above; on the
other hand, Max is the maximum value; Avg is the average
Treatments

20 30 40
15 20 25 30
1:MGS 2:WMGS 3:TMGS

Source DF Seq SS Adj SS Adj MS F P

Int 2 87.1 87.1 43.6 0.33 0.717
Qua 3 7.2 7.2 2.4 0.02 0.997
Met 2 6892.4 6892.4 3446.2 26.37 0.000

Int * Qua 6 58.9 58.9 9.8 0.08 0.998
Int * Met 4 394.9 394.9 98.7 0.76 0.557
Qua * Met 6 21.6 21.6 3.6 0.03 1.000
Int * Qua * Met 12 38.2 38.2 3.2 0.02 1.000
Error 105 13,719.9 13,719.9 130.7

Total 143 366,308.1
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value of these 30-time tests. From Table 4.4, it is obvious
that MGSPGA has better D1R value than other
approaches in general, and has more average non-domi-
nated solution numbers. Its completion time is slightly
Table 4.4
The algorithm comparison of 20 jobs and 20 machines flowshop problem

Algorithm D1R Number Sec.

Min Avg Max Std

NSGA-II 11.5 13.5 15.1 2.0 20.5 33.4
SPEA-II 9.4 14.4 20.6 2.6 19.8 87.6
SPGA 4.8 6.3 8.3 0.8 24.4 16.5
MGSPGA 3.9 5.8 7.1 0.8 26.2 16.9
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Fig. 4.3. The plot of algorithms with reference Pareto set of 20 jobs and 20
machines.
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Fig. 4.5. The plot of algorithms with reference Pareto set of 60 jobs and 20
machines.

Table 4.7
The algorithm comparison of 80 jobs and 20 machines flowshop problem

Algorithm D1R Number Sec.

Min Avg Max Std

NSGA-II 198.5 209.1 219.8 15.2 10.9 104.1
SPEA-II 188.5 199.5 210.5 13.8 15.5 118.9
SPGA 156.0 202.6 227.3 16.6 23.1 64.8
MGSPGA 84.0 122.3 173.4 25.2 14.1 66.3
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slower than SPGA but much faster than NSGA-II and
SPEA-II. Fig. 4.3 presents the Pareto set solved by these
three algorithms.

4.2.2. 40 Jobs in 20 machines

The testing result of this sample problem is depicted in
Table 4.5. From Table 4.5, it is obvious that MGSPGA
has the best performance of all. Fig. 4.4 illustrates the
Pareto set solved by these three algorithms.

4.2.3. 60 Jobs in 20 machines

The testing result of this sample problem is depicted in
Table 4.6. This sample is more complex so the results gen-
erated from each algorithm are not very close to the
referred Pareto optimal solutions. However, in compari-
son, MGSPGA still has better performance than other
approaches. The Pareto set is depicted at Fig. 4.5.

4.2.4. 80 Jobs in 20 machines

The testing result of this sample problem is depicted in
Table 4.7. From the numbers shown in Table 4.7, it can
be found that MGSPGA has great improvement effective-
ness. The Pareto set solved by the three algorithms is
shown at Fig. 4.6.
Table 4.5
The algorithm comparison of 40 jobs and 20 machines flowshop problem

Algorithm D1R Number Sec.

Min Avg Max Std

NSGA-II 28.2 30.2 32.3 2.6 21.0 54.6
SPEA-II 25.1 28.8 32.5 4.5 21.0 102.5
SPGA 21.5 26.6 32.8 2.7 25.3 31.1
MGSPGA 14.7 18.7 24.7 2.4 22.6 31.7
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Fig. 4.4. The plot of algorithms with reference Pareto set of 40 jobs and 20
machines.

Table 4.6
The algorithm comparison of 60 jobs and 20 machines flowshop problem

Algorithm D1R Number Sec.

Min Avg Max Std

NSGA-II 30.3 31.6 32.8 1.8 18.5 93.0
SPEA-II 28.6 31.1 32.1 2.4 19.0 113.8
SPGA 27.2 31.3 34.4 1.6 22.7 46.7
MGSPGA 18.5 22.4 25.6 1.9 20.4 47.8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

5450 5500 5550 5600 5650 5700 5750 5800
Cmax

T m
ax

Pareto
NSGA2
SPEA2
SPGA
MGSPGA

Fig. 4.6. The plot of algorithms with reference Pareto set of 80 jobs and 20
machines.
According to the above-mentioned four testing results,
we find that when solving more complex problems, it is
harder to find the improving effectiveness of MGSPGA.
Taking the sample of 20 jobs in 20 machines as an example,
although both SPGA and MGSPGA achieve the referred
Pareto solutions, the improving performance is not very
significant. Along with the increasing number of jobs, the
problems become more complex and thus the improving
effectiveness of MGSPGA can be obviously noticed.

5. Conclusions

Through this study, we can verify that by combining
MGS with SPGA, multiobjective scheduling problems
can be solved more effectively. In the future, MGSPGA
can be further extended to three objectives or multidi-
mensional continuous problems. The concept of sub-popu-
lations can be further embedded in local searching
procedure to improve the solution quality of the algorithm.
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Further investigation will be carried out to examine
whether it is possible to generate elite chromosomes
through better mining algorithms. It is also suggested that
different objectives of flowshop scheduling problems can be
further tested such as the minimization of the sum of job
completion time, and those with more complex require-
ments such as sequence dependent setup times.
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