
Soft Comput
DOI 10.1007/s00500-015-1886-z

METHODOLOGIES AND APPLICATION

Imperial competitive algorithm with policy learning
for the traveling salesman problem

Meng-Hui Chen1 · Shih-Hsin Chen2 · Pei-Chann Chang1

© Springer-Verlag Berlin Heidelberg 2015

Abstract The traveling salesman problem (TSP) is one of
the most studied combinatorial optimization problems. In
this paper, we present the new idea of combining the impe-
rial competitive algorithm with a policy-learning function
for solving the TSP problems. All offspring of each country
are defined as representing feasible solutions for the TSP.
All countries can grow increasingly strong by learning the
effective policies of strong countries. Weak countries will
generate increasingly excellent offspring by learning the poli-
cies of strong countries while retaining the characteristics of
their own country. Imitating these policies will enable the
weak countries to produce improved offspring; the solutions
generated will, therefore, acquire a favorable scheme while
maintaining diversity. Finally, experimental results for TSP
instances from the TSP library have shown that our proposed
algorithm can determine the salesman’s tour with more effec-
tive performance levels than other known methods.

Keywords Traveling salesman problem · Imperial
competitive algorithm · Combinatorial optimization
problems · Artificial chromosomes · Genetic algorithm

Communicated by V. Loia.

B Pei-Chann Chang
iepchang@saturn.yzu.edu.tw

1 Department of Information Management, Innovation Center
for Big Data and Digital Convergence, Yuan Ze University,
Chung-Li, Taiwan

2 Department of Information Management, Cheng Shiu
University, Kaohsiung, Taiwan

1 Introduction

The traveling salesman problem (TSP) has been extensively
studied and researched and is a well-known NP-hard prob-
lem in COPs. The problem is stated as follows: given ncities
and the geographical distance between pairs of cities, the
objective is to find the shortest closed tour in which all
cities are visited exactly once. GAs were introduced by Hol-
land (1973). These algorithms are adaptive search techniques
based on the mechanisms of natural selection and the sur-
vival of the fittest concept of biological evolution. They have
been used successfully in a variety of different problems,
including the traveling salesman problem. The benefit of
evolutionary computing is not only its simplicity but also
its ability to obtain global optima. Many research findings
have indicated that a well-adapted genetic local search algo-
rithm can acquire a near-optimal solution better than those
found by local search algorithms (Goldberg 1989; Pham
and Karaboga 2000). Therefore, numerous results on evo-
lutionary optimization have been published in recent years
(Larranaga et al. 1999; Mohammadian et al. 2002). Using
genetic algorithms to solve the traveling salesman problem
(TSP) is one of the popular approaches (Larranaga et al.
1999).

In recent years, solving the TSP using evolutionary algo-
rithms and specially GAs has attracted a lot of attention.
Many studies have been performed and researchers attempt
to further improve the effectiveness and efficiency of the GAs
by contributing to different parts of solution processes. Some
of researchers propose different forms of GA operators (Yan
et al. 2005) and others attempt to combine GA with other
possible approaches like ACO (Lee 2004), PSO, etc. Some
researchers implement a new evolutionary idea or combine
some previous algorithms and idea to create a new method
(Bonyadi et al. 2007; Chang et al. 2010, 2013). In 2010,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1886-z&domain=pdf

M.-H. Chen et al.

Chang et al. (2010) first proposed an approach, namely artifi-
cial chromosomes for genetic algorithm (ACGA), which has
been successful at injecting artificial chromosomes into the
evolutionary process of the genetic algorithm and speeding
up the convergence. In addition, Wang et al. (2011) pro-
posed two types of artificial chromosome operators. In their
method, the algorithm can evolve after a number of iterations
of injections, improving the individual’s ability to search for a
suitable combination of chromosomes. The mechanism pro-
vides a more expansive searching space while evolving.

As pointed out by some researches, an effective algorithm
should learn the positional and interactional information
between the variables and to sample new solutions from
the models (Pan and Ruiz 2012). In this paper, we propose
an improved imperial competitive algorithm (ICA) which is
embedded in a block-based artificial chromosome genera-
tion approach (Chang and Chen 2014) to further improve
the solution quality with more competitive artificial chro-
mosomes. The proposed approach is named as BBICA
standing for Block Based Imperial Competitive Algorithm.
According to the concept of ICA, different kingdoms will
have different approaches of generating their offspring by
policies. Therefore, blocks considered as policies from the
probability matrices will be generated for each kingdom.
BBICA adopt the concept of ICA to retain the diversity
of the population and to avoid the convergence to local
optima.

The primary idea of this paper is that using the ICA with
different group recombination mechanisms to generate com-
petitive artificial chromosomes increases the search space.
The proposed approach is also enhanced by the local search
using a hybrid of two mutation methods. The ICA simulates
a multi-agent algorithm. Each agent is similar to a king-
dom consisting of countries, with the strongest country in
each agent being called the imperialist and the others being
called colonies. Each country competes with the imperial-
ist of the same kingdom by evolving. A country moves in
a search space to find suitable solutions with a high fitness
level, endeavoring to become the new imperialist. Allowing
different kingdoms to evolve can increase the search space
thus generating more competitive artificial chromosomes to
speed up the convergence.

Finally, to demonstrate the proposed approach is effective.
A series of experiments were conducted and the instances
were taken from the TSP library. The experimental results
show the comparison of BBICA with three types of mutant
strategies, i.e., BBEA (Huang et al. 2012), RABNET-TSP
(Pasti and Castro 2006), and SME (Somhom et al. 1997) and
one state-of-the-art approach HMMA (Yong 2015).

2 Literature review

2.1 Traveling salesman problem

The TSP is a well-known NP-hard problem with many real-
world applications such as job-shop scheduling, large-scale
integrated routing (Gutin and Punnen 2002), vehicle rout-
ing (Laporte 1992), and drilling problems (Onwubolu and
Clerc 2004). The TSP has been extensively used as a basic
problem for comparison in improving different optimiza-
tion techniques such as genetic algorithms (Affenzeller and
Wanger 2003), simulated annealing (Budinich 1996), tabu
search (Liu et al. 2003), local search (Bianchi et al. 2005),
ant colony (Chu et al. 2004), and neural networks (Leung
et al. 2004).

The TSP is a generalized version of the Hamilton cycle.
The TSP consists of a complete graph with each edge having
a nonnegative cost. The vertices refer to cities; edges refer to
the path between cities, and edge costs refer to the distance
between cities. The TSP can be initiated as follows: given
n cities and the geographical distance between all pairs of
these cities, the task is to find the shortest closed tour in
which each city is visited exactly once. More formally, given
n cities, the TSP requires searching for a permutation using
cost matrix D = {di j}, where di j denotes the cost (known
to the salesmen) of traveling from city i to city j , which
minimizes the path length defined as follows:

f (π, D) =
n−1∑

i=0

dπi ,π(i+1)
+dπn ,π0 , (1)

where πi denotes the city at the i th location in the tour.
Assuming that a city is marked by its position (xi , y j) in
the plant and that cost matrix D contains a Euclidean dis-
tance between the i th and j th cities, the function is defined
as follows:

di j =
√

(xi − x j)2 + (yi − y j)2 (2)

The objective of a salesman is to move from city to city, vis-
iting each city only once and returning back to the starting
city. This progression is called the salesman’s tour. In the
mathematical formulation, there is a group of distinct cities
{C1,C2 …CN}, and there is a given for each pair of cities
{Ci ,C j} and a distance d{Ci ,C j}. The objective is to find
an order π of cities, such that the total time for the sales-
man’s tour is minimized. The objective function is defined
as follows:

123

Imperial competitive algorithm with policy learning...

N−1∑

i=1

d(Cn(i),Cn(i+1)) + d(Cn(N),Cn(1)) (3)

This quality is known as the tour length. Two branches of
this problem exist: asymmetric and asymmetric. A symmet-
ric problem is one in which the distance between two cities is
identical, written as d{Ci ,C j} = d{C j ,Ci}; an asymmet-
ric problem is depicted as d{Ci ,C j}�= d{C j ,Ci}. In this
paper, we consider the symmetric TSP in which the distance
from one city to another city is the same as the distance in
the opposite direction. The mathematical formulation for the
TSP is listed as follows:

min
∑

di j xi j (4)

n∑

j=1

xi j = 1 i = 1, 2, . . . n (5)

n∑

i=1

xi j = 1 j = 1, 2, . . . n (6)

∑

i, j∈S
xi j ≤ |S| − 1 2 ≤ |S| ≤ n − 2, S ⊂ {1, 2, . . . n}

(7)

xi j ∈ {0, 1} i, j = 1, 2, . . . n i �= j, (8)

where di j is the distance between city i and city j , decision
variable xi j is the route the salesman passes through (includ-
ing the route from city i to city j), and xi j = 0 means that
the route is not chosen by the salesman. Function (4) is the
minimum total distance; Functions (5) and (6) only provide
an assurance that the salesman visits each city once. Func-
tion (7) requires that no loop in any city subset should be
formed by the salesman; |S| represents the number of ele-
ments included in the set S.

In 1997, Johnson and McGeoch (1997) proposed an effec-
tive survey for solving the TSP. These methods can be
approximately categorized as local search and global search
approaches. Generally, the local search approach produces
a result that is efficient and has a fast convergence (e.g.,
2-opt and 3-opt) because of the selection, which consists
of reconnecting cities on the basis of geometric neighbor-
hood information and the edges from other individuals in
the population. However, the salesman using this approach
may be stuck at local minima because this approach does
not effectively address the diversity of feasible solutions.
Recently, two new approaches are proposed by Ouaarab et
al. (2015), and Yong (2015). Ouaarab et al. (2015) used
a simplified random-key encoding scheme to pass from a
continuous space (real numbers) to a combinatorial space.
They also considered the displacement of a solution in both

spaces using Lévy flights. The hybrid Max–Min ant system
(MMA) proposed by Yong (2015) integrated with four ver-
tices and three lines inequality is then introduced to solve the
TSP problem. In addition, Cheng et al. (2012) also applied
Ant colony algorithm for solving the multi-objective TSP
problem. In this research, each sub-colony independently
optimizes its corresponding sub-problem and shares their
evolutionary information.

2.2 Imperial competitive algorithm (ICA)

ICA is the mathematical model and the computer simulation
of human social evolution, whereas GAs are based on the
biological evolution of species. The concept of ICA is shown
in Fig. 1.

As shown in Fig. 1, ICA is simulated using the competitive
situation of three kingdoms, and the kingdom has its own
countries. The strongest country in the kingdom is the empire,
and other countries are the colonies. The strong kingdom will
plunder the weak one. Finally, ICA is often designed to be end
when there is only one kingdom. During the end of the cycle,
all countries will improve their power, i.e., increasing their
fitness, by learning from the empire. If there is any country
stronger than its empire, the country will replace its empire
and become the new empire.

The ICA is an evolutionary algorithm in the evolution-
ary computation field based on the imperialistic competition
(Atashpaz-Gargari and Lucas 2007). Recently, Nozarian and
Jahan (2012) proposed an improved memetic algorithm for
solving metaheuristic problems. The method uses ICA as
local search, and, similar to other evolutionary algorithms,
the ICA starts with initial populations and each solution is
defined as a country. In the BBICA, “Kingdom” denotes an
artificial chromosome generation approach. Countries with
different characteristics are generated by different kingdom.

3 Methodology

The ICA in this research is started by generating initial coun-
tries. Then we set group of 25 % countries of all as a kingdom,
and the country with the highest fitness of each kingdom
is considered as the empire. In order to implement policy-
learning, we develop a probability matrix to collect the good
information from the elite countries from each kingdom.
Each kingdom will generate new countries by the policy,
and then after the imperialistic competition, the resource for
generating new countries of each kingdom would be reset by
the law of jungle.

In this research, we designed four strategies to generate
artificial chromosomes. In order to be advisable to assign the
number of chromosomes to each empire, imperialistic com-
petition of ICA is applied to control the four strategies to

123

M.-H. Chen et al.

Empire 1

Empire 2

Empire 3

The country of
empire 1

The country of
empire 2

The country of
empire 3

1
Empire 1

Empire 2

Empire 3

The country of
empire 1

The country of
empire 2

The country of
empire 3

2

Empire 1

Empire 2

The country of
empire 1

The country of
empire 2

3

Empire 1

The country of
empire 1

4

Fig. 1 The concept of ICA

generate the number of chromosomes. In addition, we col-
lect the information from the solutions with high quality to
construct the dependency probability matrix. Then we also
apply the block which is generated from dependency prob-
ability matrix to implement the policy for each kingdom to
generate new artificial chromosomes.

The BBICA aims to develop an effective metaheuristic
algorithm containing two phases. The first phase adopts the
mining-blocks approach to discover effective blocks. Mean-
while, these blocks are recombined during the course of the
competition; the blocks of high quality are kept. The sec-
ond phase develops the approach for composing the artificial
chromosomes. In this study, we designed four approaches
for composing artificial chromosomes. Every artificial chro-
mosome composition represents a country; the number of
generations given to a country is determined by its strength.
In BBICA, we have four approaches to generate artificial
chromosomes. These four approaches are represented as four
kingdoms. Benefiting from the shortest distance or probabil-
ity, we designed the approach in this study to combine the
competitive blocks, which were randomly selected. How-
ever, not all of the blocks are used. The remaining cities
are combined into new artificial chromosomes that are more
competitive. Subsequently, we evaluate the reassembled
solutions and select the solutions with favorable performance
levels. In BBICA, we allow the solutions to mutate and con-
sider the reassembled solutions, selecting the solutions with
high performance levels for updating the probability matrix.
The process is repeated until the defined iterations are satis-
factory.

A flowchart describing the process of the BBICA is
shown in Fig. 2. The initial solutions are generated ran-
domly. The fitness of each solution is then calculated. We
update the probability matrix by selecting the solution that is
more competitive, based on their performance levels. During
the evolutional process, the time for injecting the artificial
chromosomes is determined by the convergence angle and
iteration number. Subsequently, we mine the blocks accord-
ing to the probability matrix. After mining the blocks, we
inject the artificial chromosomes, which are combined with
the blocks. The combined blocks continue to be adopted for
the assembling of the new artificial chromosomes; the blocks
in each artificial chromosome are randomly generated. To
retain the diversity of the population, we run a mutation oper-
ator, according to the rank of each country, and we assign
them a suitable mutation function. Finally, the new popula-
tion is generated for the next evolution, until the stopping
criteria are achieved.

In the remainder of Sect. 3, we introduce the details of
probability matrix, the block mechanism, artificial chromo-
some generation, and local search strategies.

3.1 Dependency probability matrix

In this section, we demonstrate how to construct the depen-
dency probability matrix. Each element in the dependency
probability matrix is defined as in Eq. (9). To build up the
dependency matrix, a set of m better chromosomes (C1,C2,
…, Cm) are selected from the current generation t. Yk

i j is a

123

Imperial competitive algorithm with policy learning...

Calculate
Fitness

Update
Probability

matrix

Mining
Block

Generate AC

Mutation

Rearranged the
resource of countries

by rank of empire

termination
conditions

Selection

N

End

Y

Start

Initial
population

 Initialize the
kingdoms by

fitness

Assimilation

Imperialistic
Competition

Fig. 2 The flowchart of BBICA

binary variable and can be treated like a gene within chro-
mosome Ck .

Y k
i j =

{
1 if job i is next to job j
0 otherwise

,

i = 1 . . . n; j = 1 . . . n; k = 1 . . .m (9)

Then θi j (t) in Eq. (10) which represents the number of times
that city i is next to city j at the current generation t is found
from summing up the statistic information from all m chro-
mosomes to the Y k

i j . The total number of generations is G.

θi j (t) =
∑m

k=1
Y k
i j , i = 1 . . . n; j = 1 . . . n;

t = 1 . . .G; k = 1 . . .m (10)

We transform the dependency matrix into dependency proba-
bility matrix, and each element of the dependency probability
matrix is defined as follows:

Pi j (t) = θi j (t)

m × t
i = 1 . . . n; j = 1 . . . n; t = 1 . . .G

(11)

3.2 Block mechanism

Block is represented a policy for each kingdom referred
to generate the artificial chromosomes. Thus the quality of
blocks is important to affect the quality of artificial chromo-
somes. In this research, we stored the structure of solutions to
build up a dependency probability matrix to generate blocks.
A block mining procedure applies the probability matrix for
extracting the blocks from the set of high-fit chromosomes.
It is a process of block learning that is used to discover the
hidden knowledge within the dependent variables. A block
consists of a series of genes linked to each other continually.
This section is organized as follows: Sect. 3.2.1 explains the
block mining procedure. Section 3.2.2 develops a block com-
petition mechanism.

3.2.1 Block mining procedure

A static block with size K can be generated according to
the following procedures, which function according to two
approaches in the BBICA: in the beginning of the first 10 %
iterations, the starting city in a block is selected randomly
and the top three cities with short distance to the starting
city are selected as the candidate city of the second city in
the block. The second city in the block is selected with the
highest probability according to the dominance matrix. To
demonstrate how to mine blocks in the first approach, a sim-
ple example including ten cities is shown in Fig. 3. City 3 is
selected randomly, and Cities 9, 8, and 5 are the cities with
short distance to City 3. Then City 9 has the highest proba-
bility according to the dominance matrix. So we can mine a
block which is {3, 9}. By the way, there are several blocks
constructed and stored in block archive.

In the remainder of iterations, the quality of solutions
becomes better and better. Thus, the second strategy of min-

3

9

8

5

Probability=0.52

Probability=0.29

Probability=0.18

3 9
2 6

4 7

...

Block Archive

Fig. 3 The set of blocks mined from the distance

123

M.-H. Chen et al.

3

> threshold

< threshold

3 9
2 6

4 7

...

Block Archive

8 9

5 1 10

9RLS

Fig. 4 The set of blocks mined from the probability matrix

3

> threshold

< threshold

3 8

2 6

4 7

...

Block Archive

8 91 5 10

Null

D=5 D=8 D=6 D=2 D=9

D : distance

Fig. 5 The set of blocks mined from the probability matrix

ing blocks is to set a minimum probability to be a threshold
which is used to select a city to be the second city in a block.
We also make a simple example including ten cities and the
size of the blocks is 2 to demonstrate how the second strat-
egy works. As shown in Fig. 4, the starting city in a block is
also selected randomly. According to probability matrix, the
probability of City 8 and City 9 is higher than the threshold
we set, and then we use roulette wheel selection (RLS) to
select the second city in the block.

In addition, if there is no city with probability higher than
a certain threshold, the second city in the block is selected.
As shown in Fig. 5, the distance of City 3 next to City 8 is
the shortest. So, we can build a block {3, 8}.

On the basis of the two approaches, numerous blocks will
be generated. To maintain high quality of blocks, we designed
a mechanism to remove the inefficient blocks. To ensure that
the quality of the blocks yield improved results, we use a
block selection strategy. The strategy is to calculate the prob-
ability of each block according to the probability matrix and
then sort the calculated values. In this study, only the remain-
ing 20 % of the blocks are selected according to values of
rank.

3.2.2 Block competition mechanism

As the countries evolve, there are two situations that gener-
ate blocks. In one situation, the numbers of the blocks may
become increasingly high in value. In the other situation, the
blocks may have the same cities. The proposed BBICA has
a mechanism to prevent the blocks from exhibiting high per-
formance levels in enhancing the evolution of countries and

Buffer Archive

19 6

4 5 45.01B
P

9 15 35.02B
P

1
B

2
B

Block Archive

3
B

5
B

1 4 30.03B
P

43.04B
P

4
B 18 8

New Block Archive

35.05B
P

2
B 9 15

18 8

19 6

4 51
B

4
B

3
B

Fig. 6 The block competition mechanism

from having the same cities. The block competition mecha-
nism is shown in Fig. 6.

The block archive stores the current blocks, and the buffer
archive stores the new ones. When there are blocks with the
same cities in the two archives, we evaluate the total numbers
of each city probability in the blocks. If the total number is
higher for a block, it indicates that the block has a higher
performance level for enhancing evolutionary solutions. For
example, B1 and B3 have the same “City 4,” and B1 has
higher probabilities. Thus, B1 would be saved, and B3 would
be abandoned.

3.3 Artificial chromosome generation

In Sect. 2.2, we mentioned that a “kingdom” denotes an
artificial chromosome generation approach. We adopted
imperialistic competition of ICA to control the four kingdoms
to generate the number of chromosomes. Each kingdom gen-
erates artificial chromosomes as new countries by referring
the blocks. An artificial chromosome is generated according
to certain procedures, for which four approaches are used
in the BBICA. As shown in Fig. 7, the following proposed
procedure is the rule of the first kingdom:

1. A city is picked randomly as the head.
2. A city is selected as the continuous city from the residual

cities using roulette-wheel selection. When the selected
city is contained in a block, the block, instead of the
selected city, is selected and placed in this chromosome.
The last city of the block serves as the new head.

3. Step 2 is repeated until the number of residual cities is
zero.

123

Imperial competitive algorithm with policy learning...

3 8

2 6

4 7

Block Archive

1

1. Decide a start point

1 2

2. Select next city with the roulette selection

1 2 6

3. If the city in block archive put it down

1 2 6 5 3 8 4 7

4. Repeat until all cities and blocks are sequenced

Fig. 7 The approach procedure of the first country

Fig. 8 The approach procedure of the second country

4. The procedures are repeated until a predefined number
for the country’s population is met.

As shown in Fig. 8, the following proposed procedure is
used for generating the second kingdom:

1. A city is picked randomly as the start point.
2. The city with the shortest distance from the head is

selected from the residual cities. When the selected city
is contained in a block, the block, instead of the selected
city, is selected and placed in this chromosome. The last
city of the block serves as the new head.

3. Step 2 is repeated until the number of residual cities is
zero.

4. The procedures are repeated until a predefined number
for the country’s population is met.

As shown in Fig. 9, the following proposed procedure is
used for generating the third kingdom:

1. A city is picked randomly as the head. A new block
archive contains blocks randomly selected from the exist-
ing block archive.

2. A city connected with the head is selected from the resid-
ual cities by using roulette-wheel selection. When the

3 8

NEW
Block Archive

2

2. Decide a start point

2 4

3. Select next city with the roulette selection

2 4 7

4. If the city in new archive put it down

2 4 7 5 3 8 1 6

5. Repeat until all cities and blocks are sequenced

3 8

2 6

4 7

Block Archive

1. The new archive save some blocks which are randomly
selected from block archive

4 7

Fig. 9 The approach procedure of the third country

selected city is contained in a block from the new block
archive, the block is selected and placed in this chromo-
some. The last city of the block serves as a new head.

3. Step 2 is repeated until the number of residual cities is
zero.

4. The procedures are repeated until a predefined number
for the country’s population is met.

As shown in Fig. 10, the following proposed procedure is
used for generating the fourth kingdom:

1. A city is picked randomly as the head. A new block
archive contains blocks randomly selected from the exist-
ing block archive.

2. The city having the shortest distance from the head is
selected from the residual cities. When the selected city
is contained in a block from the new block archive, the
block is selected and placed into this chromosome. The
last city of the block serves as a new head.

3. Step 2 is repeated until the number of residual cities is
zero.

4. The procedures are repeated until a predefined number
for the country’s population is met.

As mentioned, the strategies of blocks applied and choos-
ing the city connected are both two approaches. In blocks-

123

M.-H. Chen et al.

3 8

NEW
Block Archive

1

2. Decide a start point

1 5

3. Select next city with the shortest distance

1 5

4. If the city in new archive put it down

1 5 2 7 3 8 4 6

5. Repeat until all cities and blocks are sequenced

3 8

2 6

4 7

Block Archive

1. The new archive save some blocks which are randomly
selected from block archive

Fig. 10 The approach procedure of the fourth country

applied strategy, one is using all blocks, and the other is just
using some of all blocks randomly. In choosing the city con-
nected strategy, one is to choose the city by roulette selection,
and the other is by shortest distance. Therefore, there are four
approaches of generating countries in our study. The primary
idea is to enhance the diversity of country construction in this
procedure using different strategies. In other words, to main-
tain the diversity of populations is to mine feasible solutions.

As shown in Fig. 11, maintaining a continually strong
country and increasing its population are the core concepts
of the ICA. The BBICA was designed to continually revise
each country’s population number by calculating the aver-
age fitness of each country, ranking each country by average

fitness, and then revising each country’s population number
according to its rank.

Finally, on the basis of the ranking derived from the
average-fitness calculations, we use different mutation rules.
For this reason, we prefer that weak countries use the pow-
erful mutation rule, which causes the weak countries to
improve. However, strong countries use the mutation rule
with high diversity to maintain the high diversity of the coun-
try’s population.

3.4 Local search strategies

In this study, we use two local search strategies, namely the
“swap” and the “inverse”.

As shown in Fig. 12, the swap chooses two points and then
exchanges the two cities. In the TSP, this swap results in the
solution construction having four new links.

As shown in Fig. 13, the inverse also selects two points.
Subsequently, the inverse causes all of the cities between the
chosen points to invert. Specifically, it would exchange City
5 and City 3. The inverse procedure results in the solution
construction having two new links in the TSP. The solutions
can invoke the method most appropriate for them, depending
on what they require to evolve.

4 Experimental results

In this section, we present the experimental results of the
BBICA and compare its performance levels with those of
other algorithms. Each algorithm was executed 30 times in
each instance, and the computing hardware consisted of an
Intel Core processor (3.40 GHz) with DDR2 800 memory
(2 GB). The programming language used was Microsoft

Fig. 11 Revise number of countries population

123

Imperial competitive algorithm with policy learning...

9 2 1 5 4 10 7 3 8 6C i

point 1 point 2

Before

9 2 1 3 4 10 7 5 8 6C iAfter

Fig. 12 Swap procedure

9 2 1 5 4 10 7 3 8 6C i

point 1 point 2

Before

9 2 1 3 7 10 4 5 8 6C iAfter

Fig. 13 Inverse procedure

Visual C# 2010 Express. The detailed setup and results of
the experiments are explained in the remainder of Sect. 4.

The error ratio (ER) is used to evaluate the solution quality
and is determined as follows:

ER(%) = observed value − optimal value

optimal value
× 100 (%),

(12)

where the observed value is the fitness of the optimal solution
from one algorithm and the optimal value is the best known
solution for the used instance. According to the ER result of
30 individual runs, we can obtain the minimal ER (MER)
and average ER (AER).

4.1 Parameter setting

There are five important parameters of our proposed approach
to be decided. After preliminary experimental analysis, para-
meters were established, as shown in Table 1.

The block size denotes the length of the mining blocks.
The block counts are the total number of blocks to be mined
after reaching the final number of generations, which is equal
to 0.3 times the total number of cities. Finally, the total num-
ber of generation is set to equal 50 times the total number of
cities.

Table 1 Set of parameters

Parameter Values of parameter

Number of the initial solutions 100

Number of the elite solutions 20

Block size 2

Block counts City × 0.3

Generation City × 50

4.2 Comparison results

All tested instances were chosen from the solutions on the
website of the TSP library that are known to be the most effec-
tive solutions. Three approaches (i.e., BBEA, RABNET-TSP,
and SME) were selected from the TSP library for comparison
with our proposed approach. The BBEA is block-based with
superior performance levels. The RABNET and SME algo-
rithms are based on approaches employing self-organized
map networks and have extremely efficient and effective per-
formance levels. Next, three objectives were used to show the
performance of our proposed approach.

4.2.1 Performance of different mutant strategies

BBICAHybrid includes hybrid swap and inverse strategies and
it is designed to further enhanced the performance of BBICA
in solving the TSP. Hence, we evaluated different strategies
by comparing the BBICA’s AER performance levels for three
types, namely BBICAHybird, BBICASwap, and BBICAInverse.

As shown in Table 2, the “Opt” column is the best
known result and BBICAHybird is a mix of the one-point
swap and inverse; BBICASwap uses the one-point swap,

Table 2 Performance comparison of TSP’s instance

Instance Opt Strategies

BBICAHybird BBICASwap BBICAInverse

AER (%) AER (%) AER (%)

eil51 426 1.64 1.47 1.34

eil76 538 2.49 1.37 2.00

eil101 629 3.53 3.28 3.51

berlin52 7542 0.03 0.03 0.03

bier127 118,282 0.87 0.77 1.08

ch130 6110 2.50 2.64 2.93

ch150 6528 0.55 0.59 0.78

rd100 7910 0.86 0.66 0.52

lin105 14,379 0.66 0.11 0.39

lin318 42,029 4.75 6.89 5.13

kroA100 21,282 0.05 0.06 0.38

kroA150 26,524 1.77 2.51 2.05

kroA200 29,368 1.60 2.65 2.08

kroB100 22,141 0.78 0.58 0.86

kroB150 26,130 1.84 2.85 2.18

kroB200 29,437 3.20 5.22 4.04

kroC100 20,749 0.76 0.34 0.37

kroD100 21,294 2.13 3.63 2.30

kroE100 22,068 0.94 1.75 0.97

rat575 6773 5.48 10.28 6.65

rat783 8806 6.11 12.62 8.83

Average 2.03 2.87 2.30

123

M.-H. Chen et al.

Table 3 Performance comparison of tsp’s instance

Instance Opt BBICAHybird BBEA RABNET SME
MER (%) MER (%) MER (%) MER (%)

eil51 426 0.94 0.47 0.23 1.64

eil76 538 1.86 1.12 0.56 2.60

eil101 629 2.70 2.07 1.43 1.75

berlin52 7542 0.03 0.03 0.00 2.29

bier127 118,282 0.50 7.32 0.58 1.32

ch130 6110 1.55 1.11 0.57 1.52

ch150 6528 0.41 0.32 1.13 1.58

rd100 7910 0.05 1.18 0.91 1.49

lin105 14,379 0.02 0.02 0.00 0.00

lin318 42,029 3.46 2.95 1.92 2.68

kroA100 21,282 0.01 0.01 0.24 0.60

kroA150 26,524 1.12 0.94 0.58 1.53

kroA200 29,368 1.14 0.89 0.79 2.64

kroB100 22,141 0.31 0.00 0.91 1.84

kroB150 26,130 0.97 0.23 0.51 0.81

kroB200 29,437 1.55 2.36 0.68 0.90

kroC100 20,749 0.00 0.00 0.80 0.83

kroD100 21,294 0.77 0.00 0.38 0.97

kroE100 22,068 0.23 0.17 1.48 1.41

rat575 6773 4.62 9.67 4.05 4.68

rat783 8806 5.29 7.00 5.00 5.79

Average 1.31 1.80 1.08 1.85

and BBICAInverse uses the inverse. The results showed that
BBICAHybird has higher performance than BBICASwap and
BBICAInverse. Thus, BBICA mixing the different strategies
can increase the search space and enhance the BBICA’s
exploitation ability.

4.2.2 Comparison with other algorithms in low complexity
instances

In this section, the comparisons of the experimental results
for the BBEA, RABNET, and SME are presented in Tables
3 and 4.

In Table 3 is presented the MER performance of
BBICAHybird, BBEA, RABNET, and SME. The results show
that the MER of the most effective solution in BBICAHybird

is 1.31 %, which is superior to those of the BBEA and SME.
However, the MER of the most effective solution in BBICA
was not as effective as RABNET. In some instances, the
BBICA still had more effective performance levels than the
RABNET did.

According to Table 4, the results showed that the AER
performance for the BBICAHybird was 2.03 % more effec-
tive than those of BBEA, RABNET, and SME. These results

Table 4 Performance comparison of TSP’s instance

Instance Opt BBICAHybird BBEA RABNET SME
AER (%) AER (%) AER (%) AER (%)

eil51 426 1.64 0.47 2.70 3.43

eil76 538 2.49 1.62 3.40 4.52

eil101 629 3.53 3.32 3.12 4.23

berlin52 7542 0.03 0.03 5.18 6.41

bier127 118,282 0.87 7.76 2.20 2.92

ch130 6110 2.50 1.84 2.82 3.23

ch150 6528 0.55 1.53 3.22 3.42

rd100 7910 0.86 1.18 0.91 1.49

lin105 14,379 0.66 0.02 0.15 0.67

lin318 42,029 4.75 3.90 3.97 4.51

kroA100 21,282 0.05 0.01 1.13 1.57

kroA150 26,524 1.77 1.47 3.14 3.31

kroA200 29,368 1.60 2.26 2.80 3.57

kroB100 22,141 0.78 0.30 2.35 2.17

kroB150 26,130 1.84 0.82 1.92 2.59

kroB200 29,437 3.20 3.24 2.37 2.89

kroC100 20,749 0.76 0.06 1.07 1.93

kroD100 21,294 2.13 0.44 1.89 2.59

kroE100 22,068 0.94 0.33 2.93 2.78

rat575 6773 5.48 10.85 5.06 5.91

rat783 8806 6.11 7.95 6.11 6.60

Average 2.03 2.35 2.78 3.37

indicate that the steadiness of the BBICA’s search solution
was the most effective of these four approaches.

Subsequently, we considered the convergence perfor-
mance of the BBEA and BBICAHybird, as shown in Fig. 14,
where the BBICAHybird is blue line and BBEA is red line.

The converge-graphs of the BBICAHybird were compared
with the BBEA using the rd100, kaoA200, lin318, and rat783
instances. The red line represents the BBEA and the blue
line represents the BBICAHybird. As shown in Fig. 14, the
convergence performance of the BBICA was superior to that
of the BBEA.

4.2.3 High complexity instances

In the remainder of Sect. 4, we consider the performance of
the BBEA and BBICA for solving TSP instances having high
complexities. The results are shown in Table 5.

According to Tables 5 and 6, even in the instance with high
complexity, BBICAHybird still has superior performance to
BBEA.

There are more mechanisms to enhance diversity in
BBICA, including the two strategies to mine blocks, four
strategies to construct the artificial chromosomes, and two
mutant strategies to recombine the solutions. Thus, BBICA

123

Imperial competitive algorithm with policy learning...

Fig. 14 The convergence graph of BBICAHybird compared with BBEA

Table 5 Performance comparison of TSP’s instance

Instance Opt BBICAHybird BBEA

Best MER (%) Best MER (%)

pr1002 259,045 274,416 5.93 278,040 7.33

pcb1173 56,892 61,142 7.47 61,638 8.34

pr2392 378,032 379,862 0.48 411,449 8.84

Average 4.63 8.17

Table 6 Performance comparison of TSP’s instance

Instance Opt BBICAHybird BBEA

Best MER (%) Best MER (%)

pr1002 259,045 275,793.2 6.47 279,270.5 7.81

pcb1173 56,892 61,510.2 8.12 62,066.1 9.09

pr2392 378,032 380,838 0.74 414,710 9.70

Average 5.11 8.87

is more effective than BBEA even though both approaches
are block based.

4.2.4 Comparison with the state-of-the-art approach

In this section, the comparison of HMMA (Yong 2015) and
our approach are shown in Table 7. The average MER of

Table 7 Performance comparison of TSP’s instance

Instance Opt BBICAHybird HMMA

MER (%) AER (%) MER (%) AER (%)

eil76 538 1.86 2.49 2.04 3.72

berlin52 7542 0.03 0.03 0.03 0.03

ch130 6110 1.55 2.50 1.50 3.39

ch150 6528 0.41 0.55 1.94 3.39

lin105 14,379 0.02 0.66 0.11 1.29

lin318 42,029 3.46 4.75 8.12 9.94

kroA100 21,282 0.01 0.05 0.42 0.69

kroA150 26,524 1.12 1.77 2.39 4.99

kroA200 29,368 1.14 1.60 2.15 6.94

kroB100 22,141 0.31 0.78 1.12 2.26

kroB150 26,130 0.97 1.84 1.74 3.22

kroB200 29,437 1.55 3.20 4.89 7.90

kroC100 20,749 0.00 0.76 0.01 1.09

kroD100 21,294 0.77 2.13 0.73 3.28

rat575 6773 4.62 5.48 11.60 14.62

rat783 8806 5.29 6.11 15.25 16.47

Average 1.44 2.03 3.38 5.20

BBICAHybird is 2.03 % better than HMMA, which demon-
strates that the effective search quality of BBICAHybird is
higher than HMMA. In addition, BBICA is also with better

123

M.-H. Chen et al.

performance in average AER than HMMA, which shows the
robust of BBICAHybird is higher than HMMA.

5 Conclusion

To improve convergence speeds and to avoid being restricted
to local optima of the ICA, we proposed a block-based arti-
ficial chromosome generation approach for the ICA, namely
the BBICA. The BBICA uses the concept of block mining
for artificial chromosome generation in the ICA to enhance
the fitness quality and maintain the diversity of population.
The BBICA exhibits superior performance levels to those of
other approaches because the BBICA uses multiple rules to
generate blocks that can be further combined into diversified
chromosomes with enhanced quality. According to the exper-
imental results, the BBICA has faster convergence speeds
than the BBEA, an algorithm that uses only one rule to gen-
erate blocks. In addition, our proposed approach uses two
local search strategies for increasing its performance levels in
solving TSP problems. Finally, comparing the experimental
results with those of other well-known approaches validated
the concept of the BBICA, an algorithm capable of enhancing
the searching ability of the ICA.

In addition, even the result shows that the proposed
approach is effective for solving the TSP, but there is some
room for improvement in solving high complexity instances.
Thus, further work is suggested to develop a mechanism for
enhancing the diversity of population to avoid the premature
convergence problem.

Compliance with ethical standards

Conflict of interest There is no conflict of interest with this research
as known by the authors.

References

Affenzeller M, Wanger S (2003) A self-adaptive model for selective
pressure handling within the theory of genetic algorithms. Lect
Notes Comput Sci 2809(1):384–393

Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algo-
rithm: an algorithm for optimization inspired by imperialistic
competition. In: IEEE congress on evolutionary computation, pp
4661–4667

Bianchi L, Knowles J, Bowler J (2005) Local search for the probabilistic
traveling salesman problem: correction to the 2-p-opt and 1-shift
algorithms. Eur J Oper Res 162(1):206–219

Bonyadi RM, Rahimi Azghadi SM, Shah-Hosseini H (2007) Solv-
ing travelingsalesman problem using combinational evolutionary
algorithm. In: Boukis C, Pnevmatikakis L, Polymenakos L (eds)
IFIP international federation for information processing. Artificial
intelligence and innovations 2007: from theory to applications, vol
247, Springer, Boston, pp 37–44

Budinich M (1996) A self-organizing neural network for the traveling
salesman problem that is competitive with simulated annealing.
Neural Comput 8:416–424

Chang PC, Chen MH (2014) A block based estimation of distribu-
tion algorithm using bivariate model for scheduling problems. Soft
Comput 18(6):1177–1188

Chang PC, Chen SH, Fan CY (2010) Generating artificial chromosomes
with probability control in genetic algorithm for machine schedul-
ing problems. Ann Oper Res 180(1):197–211

Chang PC, Chen MH, Tiwari MK, Iquebal AS (2013) A block-based
evolutionary algorithm for flow-shop scheduling problem. Appl
Soft Comput 13(1):4536–4547

Cheng J, Zhang G, Li Z, Li Y (2012) Multi-objective ant colony
optimization based on decomposition for bi-objective traveling
salesman problems. Soft Comput 16:597–614

Chu SC, Roddick JF, Pan JS (2004) Ant colony system with communi-
cation strategies. Inf Sci 167(1–4):63–76

Goldberg DE (1989) Genetic algorithms in search, optimization and
machine learning (book style). Addison-Wesley, Boston

Gutin G, Punnen AP (2002) The traveling salesman problem and its
variations. Springer, New York

Holland JH (1973) Genetic algorithms and the optimal allocation of
trials. SIAM J Comput 2:88–105

Huang WH, Chang PC, Wang LC (2012) A fast block-based evolu-
tional algorithm for combinatorial problems. World Acad Sci Eng
Technol 6:771–777

Johnson DS, McGeoch LA (1997) The traveling salesman problem: a
case study in local optimization. In: Aarts EHL, Lenstra JK (eds)
Local search in combinatorial optimization. Wiley, Chichester, pp
215–310

Laporte G (1992) The vehicle routing problem: an overview of exact
and approximate algorithms. Eur J Oper Res 59(2):345–358

Larranaga P, Kuijpers CMH, Murga RH, Inza I, Dizdarevic S (1999)
Genetic algorithms for the travelling salesman problems: a review
of representations and operators. Artif Intell Rev 13:129–170

Lee ZJ (2004) A hybrid algorithm applied to traveling salesman prob-
lem. In: Proceedings of the 2004 IEEE international conference
on networking, sensing and control, pp 237–242

Leung KS, Jin HD, Xu ZB (2004) An expanding self-organizing
neural network for the traveling salesman problem. Neural comput
62:267–292

Liu G, He Y, Fang Y, Qiu Y (2003) A novel adaptive search strategy of
intensification and diversification in tabu search. In: Proceedings
of IEEE international conference on neural networks and signal
processing, Nanjing, pp 14–17

Mohammadian M, Sarker R, Yao X (2002) Evolutionary optimization.
Kluwer Academic, Boston

Nozarian S, Jahan MV (2012) A novel memetic algorithm with impe-
rialist competition as local search. IPCSIT Hong Kong Conf
30:54–59

Onwubolu GC, Clerc M (2004) Optimal path for automated drilling
operations by a new heuristic approach using particle swarm opti-
mization. Int J Prod Res 44(3):473–491

Ouaarab A, Ahiod B, Yang XS (2015) Random-key cuckoo search for
the travelling salesman problem. Soft Comput 19(4):1099–1106

Pan QK, Ruiz R (2012) An estimation of distribution algorithm for lot-
streaming flow shop problems with setup times. Omega 40(2):166–
180

Pasti R, de Castro LN (2006) A neuro-immune network for solving the
traveling salesman problem. In: Proceedings of international joint
conference on neural networks, vol 6, Sheraton Vancouver Wall
Centre Hotel, Vancouver, 16–21 July 2006, pp 3760–3766

Pham DT, Karaboga D (2000) Intelligent optimization techniques:
genetic algorithms. Tabu search, simulated annealing and neural
networks. Springer, London

Somhom S, Modares A, Enkawa T (1997) A self-organizing model for
the travelling salesman problem. J Oper Res Soc 48:919–928

Wang YW, Wu JL, Lin JL (2011) Artificial chromosomes embedded
in sub-population genetic algorithm for a multi-objective schedul-

123

Imperial competitive algorithm with policy learning...

ing problem. In: 3rd international conference on information and
financial engineering, vol 12. IPEDR IACSIT Press, Singapore, pp
108–112

Yan XS, Li H, CAI ZH, Kang LS (2005) A fast evolutionary algorithm
for combinatorial optimization problem. In: Proceedings of the
fourth international conference on machine learning and cyber-
netics, pp 3288–3292

Yong W (2015) Hybrid max–min ant system with four vertices and
three lines inequality for traveling salesman problem. Soft Comput
19:585–596

123

	Imperial competitive algorithm with policy learning for the traveling salesman problem
	Abstract
	1 Introduction
	2 Literature review
	2.1 Traveling salesman problem
	2.2 Imperial competitive algorithm (ICA)

	3 Methodology
	3.1 Dependency probability matrix
	3.2 Block mechanism
	3.2.1 Block mining procedure
	3.2.2 Block competition mechanism

	3.3 Artificial chromosome generation
	3.4 Local search strategies

	4 Experimental results
	4.1 Parameter setting
	4.2 Comparison results
	4.2.1 Performance of different mutant strategies
	4.2.2 Comparison with other algorithms in low complexity instances
	4.2.3 High complexity instances
	4.2.4 Comparison with the state-of-the-art approach

	5 Conclusion
	References

