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ABSTRACT
Doctors conventionally analyzed echocardiographic images for diagnosing congenital heart
diseases (CHDs). However, this process is laborious and depends on the experience of
the doctors. This study investigated the use of deep learning algorithms for the image
detection of the ventricular septal defect (VSD), the most common type. Color Doppler
echocardiographic images containing three types of VSDs were tested with color doppler
ultrasound medical images. To the best of our knowledge, this study is the first one to solve
this object detection problem by using a modified YOLOv4–DenseNet framework. Because
some techniques of YOLOv4 are not suitable for echocardiographic object detection, we
revised the algorithm for this problem. The results revealed that the YOLOv4–DenseNet
outperformed YOLOv4, YOLOv3, YOLOv3–SPP, and YOLOv3–DenseNet in terms of metric
mAP-50. The F1-score of YOLOv4-DenseNet and YOLOv3-DenseNetwere better than those of
others. Hence, the contribution of this study establishes the feasibility of using deep learning
for echocardiographic image detection of VSD investigation and a better YOLOv4-DenseNet
framework could be employed for the VSD detection.
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I. Introduction

Wu et al. [1] studied the 7-year data of the Taiwan health
insurance database and determined that, on average, 13 out
of 1000 newborn infants have congenital heart disease (CHD)
annually. The 5-year relative mortality rate of infants with
CHDs is 5% [2]. With the advances in medical technology,
CHDs can be detected using ultrasound images obtained at 18–22
weeks of gestation [3]. Echocardiographic images do not involve
radioactivity, cause minimal stress on fetuses and newborns, and
are cost effective [4]–[6]. Most parents and doctors beginmedical
planning at 18–22 weeks. Therefore, it is critical to detect CHDs
by using ultrasound images in the early stage.
Two types of ultrasound images are possible, namely black-

and-white and color doppler echocardiographic images. The
color doppler echocardiographic images can provide critical
information on velocities, accelerations, direction of the heart’s
blood flow (denoted by the red and blue color, respectively), flow
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rate, and whether the blood pressure is diastolic or systolic [7].
The red and blue colors represent blood flowing toward and
leaving the ultrasound probe, respectively. A golden-yellow color
indicates a rapid blood flow. Doppler ultrasound images provide
essential features of CHD. Therefore, doppler echocardiographic
imaging was used in this study.

The ventricular septal defect (VSD) is the most common CHD
and accounts for upto 30% of all CHDs [1]. Therefore, the VSD
recognition problem was investigated in this study. Furthermore,
three subtypes of VSD, namely Type 1, Type 2, and Type 4, were
included in this study. Because type 3 VSD usually is associated
with other congenital cardiac anomaly (so called endocardial
cushion defect or atrial-ventricular canal defect) and it is very
rare to have isolated type 3 VSD; thus, we exclude type 3 VSD
to study. Doppler echocardiographic images of the three images
are depicted in Fig. 1. Both VSD Type 1 and Type 2 typically
involve the parasternal short-axis view’s aortic root section. The
aortic valve is at the center of the echocardiographic image. Fig.
1a in Fig. 1 shows that if the blood flow of the hole is between
11 and 1 o’clock, then the VSD may be Type 1. If the hole
blood flow is between 9 and 11 o’clock, then the VSD is Type
2. The echocardiographic image of a patient with VSD Type 2 are
presented in Fig. 1b of Fig. 1.
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For identification of Type 4 VSD, doctors evaluate the horizon-
tal section of the mitral valve of the parasternal short-axis view
and determine the doppler flow in the left ventricle from 9 to 1
o’clock. In practice, more than one hole of Type 4 VSD may oc-
cur. Therefore, the recognition of this VSD type is difficult. In Fig.
1c, a spot was observed in the 12 o’clock position. To the best of
our knowledge, this study is the first to focus on the VSD object
detection problem. There is much room to study this problem.

(a) The short axis imaging at cardiac base show-
ing Type 1 VSD color flow jet (arrow-head)

(b) The short axis imaging at cardiac base show-
ing Type 2 VSD color flow jet (arrow-head)

(c) The short axis imaging near cardiac apex
showing Type 4 VSD color flow jet (arrow-head)

Fig. 1. Doppler echocardiographic of VSD Type 1, Type 2 and
Type 4 in the parasternal short-axis view (LV: Left Ventricle,
RV: Right Ventricle, RVOT: Right Ventricular Outflow Tract, LA:
Left Atrium, RA: Right Atrium, AV: Aortic Valve, PA: Pulmonary
Artery)

Different views and angles may lead to difficulties in identify-
ing the characteristics of the three VSD types. Pézard et al. [8]
stated that ultrasound image detection of CHDs involved chal-
lenges such as the ability and experience of physicians or radi-
ologists [8], ambiguous images, and the nature of defects, which
may affect the outcome of the judgment [9]. Furthermore, doc-
tors may capture many ultrasound images when they check a pa-
tient; however, determining appropriate image data is time con-
suming. Deep learning (DL) algorithms used for automatic de-
tection and segmentation of complex cardiac echocardiographic
structures may detect the region of interest (ROI) rapidly, thus
reducing time and effort required for the process [5], [10]–[15].
You only look once (YOLO)v3 [16], YOLOv4 [17], RetinaNet

[18], and Faster RCNN [19] are some popular algorithms.
YOLOv4 is a state-of-the-art algorithm [17] that can improve the
quality and efficiency of detection. Compared with YOLOv3,
YOLOv4 integrates numerous methods. However, according to
our pilot experiments, we determined that some methods may
not apply to our studied problem. A modified YOLOv4 was used
in the study.

YOLOv4 comprises a cross-stage partial (CSP) network [20]
and DarkNet [21]. Because DenseNet [22] can extract more
features than DarkNet, DarkNet was replaced with DenseNet121
in YOLOv3, which provided better results [23], [24]. Therefore,
we replaced CSPDarkNet with CSPDenseNet121 in YOLOv4. The
model was named YOLOv4-DenseNet121 or YOLOv4-DenseNet.
To the best of our knowledge, this study is the first to attempt
such modification. The proposed algorithm, YOLOv4-DenseNet,
is the other major contribution of this study.

The rest of this paper is organized as follows. Section
II provides detailed steps of data collection and automatic
organization of the data set. The patients’ ID, name, or birthday,
were removed to ensure privacy and avoid information leak. In
Section III, we present the YOLOv4-DenseNet algorithm. Next,
we compare the revised YOLOv4-DenseNet with the unmodified
YOLOv4 and some variants of YOLOv3. We present a comparison
of the proposed algorithms in Section IV. Finally, we present our
conclusions in Section V.

II. Medical Image Collection and Automation of
Data set Arrangement

The ultrasound images used in this study were provided
by Kaohsiung Veterans General Hospital 1 . Videos were
transformed into frames/figures. Doctors identified each figure
from the collected images to ensure the correctness of the data
set. Sorting the correct classification and the required bounding
boxes can be time-consuming. This study developed a standard
operating procedure in Fig. 2 considering the professional
ability of the doctor, protection of the patient’s information, and
correctness of the data. The step-by-step procedure is as follows.

VSD  Ultrasound Videos

Images Frame Extraction

Privacy Information Removal

Images Files Encryption 

Deep Learning Model Classifies the Out
Images

Results Examination & Labeling

Results Verification by Cardiologist

Fig. 2. Dataset arrangement procedures

1https://eng.vghks.gov.tw/
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1. Echocardiographic videos were provided by Kaohsiung Veter-
ans General Hospital. The study protocol was approved by the
Institutional Review Board (IRB) of the hospital [IRB number
is 19-CT8-10(190701-2)]. Patients with VSD diagnosis were se-
lected for the study.

2. We extracted each frame from the echocardiographic videos.
The principal image resolution was 800×600.

3. Privacy: We removed images that contained the patient’s
personal information, such as name, case number, and date
of birth. Thus, we removed any identifying information from
each figure. The final resolution of the images was 706 × 532.

4. The images were converted to the PNG format to ensure
compression without loss of information. The file name of the
image was encrypted using the original video file name, and
the custom private key of the project was encrypted using the
advanced encryption standard algorithm combined with the
video and frame number.

5. We used a few data sets to train the DLmodel. Then, the initial
model was used to classify the images that were not arranged.

6. We then examined the classification results and labeled the
images.

7. At least one cardiologist verified the classification and ROIs.
Before implementing Step 1, the coauthors obtained the

required licenses from the relevant human research ethics
committee. Steps 3–6 were executed after Kaohsiung Veterans
General Hospital provided the required medical images. The final
steps in processing these data still relied on professional doctors’
judgment to provide adequate training quality.

III. Methods

The YOLOv4 algorithm is described in Section A. The differ-
ences between YOLOv4 and the modified YOLOv4-DenseNet are
described in Section B. The metrics applied to evaluate the per-
formance of the proposed algorithm against other algorithms are
presented in Section C.

A. Main characteristics of the YOLOv4 framework

State-of-the-art algorithms, such as CSP, spatial pyramid pool-
ing (SPP), feature pyramid network (FPN), path aggregation net-
work (PANet), Mish activation function, Mosaic augmentation,
dropblock, complete IoU loss (CIoU), class label smoothing, and
cosine annealing scheduler, are incorporated in YOLOv4. Fig. 3
presents the modified YOLOv4 framework, which includes three
parts, namely the backbone, neck, and head.
CSPDarknet is the main characteristic of the YOLOv4 back-

bone. The CBM, which is a combination of the convolution layer
and the batch normalization (BN) and Mish activation function,
was the input of CSPDarkNet. The input resolution of the first
convolution layer was 608*608. The Mish function is a self-
regular non-monotonic neural activation function that allows
relavant information to penetrate the neural network. The ZCRn
is composed of zero padding, CBM, and CSPRn. CSPRn denotes
the CSPNet framework with n number of replications. CSPNet
divided the feature maps into two parts. In the first part, the gra-
dient changes from the beginning to the end are recorded into
the feature map, which reduces the number of calculations and
memory costs and ensures high accuracy. The second includes
the ResNet skip connections. Finally, the first part is concate-
nated with the second part’s feature maps. The output resolu-
tions of ZCR1, ZCR2, and ZCR8 were 76 × 76, 38 × 38, and 19 ×
19, respectively.
In the neck area, the FPN and PANet are used in YOLOv4,

whereas only the FPN is used in YOLOv3. The FPN performs
the upsampling from a smaller resolution to larger resolutions

and then concatenates with the large-size ZCRn. The PANet
framework employs the bottom-up path augmentation with prior
local convolution layers through the upsampling operation to
shorten the information path between high- and low-resolution
features.

In the head area, YOLOv4 and YOLOv3 use the same head.
The output resolution with the number of feature maps was 76
× 76/256, 38 × 38/512, and 19 × 19/1024. The only change is the
loss function. The CIoU is used as the loss function of YOLOv4 to
measure the difference between the ground truth and predicted
box.

B. Modified YOLOv4-DenseNet algorithm

The results of our pilot experiments revealed that not all
approaches of YOLOv4 suited our problem. In particular, the
performance of the mosaic data augmentation, SPP, and cosine
annealing scheduler was not satisfactory. For example, although
the mosaic augmentation method is the major cause of the
superior performance of YOLOv4 in small object detection, the
size of the CHD detection objects is large, and characteristics
of CHD are located at a specific area. The cosine annealing
scheduler did not yield superior performance. Therefore, the
algorithm was suitably modified to address the aforementioned
characteristics. Because of the GPUmemory limitation, our input
resolution decreased to 416 × 416 instead of 608 × 608 used in
YOLOv4..

To enhance the performance of the YOLOv4 algorithm,
this study replaced CSPDarkNet with CSPDenseNet because
DenseNet extracts more information than DarkNet does. In the
backbone area of Fig. 4, the ZCRn block was replaced with the
CSPDn block. The values of n are 6, 16, and 24. Two subblocks
belonged to the CSPDn block, namely the repeated Denseblocks
(blk) and transition block. The number of times Dense blk is re-
peated is based on the value of n. In the proposed algorithm, the
FPN and PANet were implemented in the neck area. The first dif-
ference between the proposed algorithm and YOLOv4 is that we
removed the SPP because the SPP lowers performance. Second,
because the SPP was removed, the number of CBL was six instead
of seven in the top branch.

Finally, in the head area, we used a small input resolution; thus,
the output scales were 52 × 52, 26 × 26, and 13 × 13. Furthermore,
we determined that the number of output feature maps may not
be useful for our studied problem. To solve this problem, we
added more feature maps in the YOLO head. The corresponding
output resolution with the number of feature maps was 52 ×
52/512, 26 × 26/1024, and 13 × 13/1024. The loss function of the
proposed algorithmwas identical to those of the original YOLOv4
algorithm.

C. Evaluation metrics

The unlearned image was the target of the test. The threshold
of intersection over unionwas set to 50. If the predicted box of the
unlearned images intersected with the ground truth was less than
50, the prediction failed. The four conditions for classification
were as follows: true positive, true negative, false positive, and
false negative. We evaluated the performance of the model in
terms of accuracy (Eq. 1), average precision (Eq. 2), average
recall (Eq. 3), and F1-Score (Eq. 4). Finally, we used the
average precision metric of Pascal VOC 2012. We calculated the
classification mean to obtain the mAP.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F1 ´ Score =
2 ˚ Precision ˚ Recall

Precision+Recall
(4)

IV. Empirical Results

This research collected 483 images of Kaohsiung Veterans
General Hospital. There are 67, 129, and 287 images for type
1, type 2, and type 4 of VSD, respectively. These figures are
further divided into train, validation, and test sets. The dataset
distribution is shown in Fig. 5.
Based on a YOLOv3 project on Github 2 , we code the YOLOv3-

SPP [21], YOLOv3-DenseNet [23], [24], YOLOv3-DenseNet-
SPP, YOLOv4 [17], and revised YOLOv4-DenseNet framework
by ourselves. Each algorithm runs 1000 epochs with three
replications. We executed these algorithms on Tensorflow 1.15.3
environment and nVidia RTX 2080 GPU to experiment. The
parameters of the proposed revised YOLOv4-DenseNet are shown
as follows. The optimization algorithm is Adam, with the
learning rate 1e-4. The number of epochs is 1,000. Due to the
limitation of the GPU memory, the number of batch size is set to
4 and the input resolution to be 416*416 for YOLOv4 instead of
608*608. Hence, we denote YOLOv4 to be YOLOv4’ to distinguish
the difference. Finally, we employed the latest model trained by
each algorithm to do the following comparisons.
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Fig. 5. Dataset arrangement PDF

We list the precision, recall, F1-score, and mAP-50 of the six
algorithms in Table 1. Whenwe compare the variants of YOLOv3,
YOLOv3-DenseNet might be the best one, according to the F1-
score and mAP-50. In particular, when we compare the YOLOv3
with YOLOv3-DenseNet, the F1-score is improved by 10%, and
mAP is increased by 20%. The improvement is quite significant.
Later on, SPP only improves the combinationwith YOLOv3 alone;
however, SPP does not yield positive outcomes for YOLOv3-
DenseNet-SPP because the variance of the mAP-50 values is high.
That is the reason why our proposed algorithm does not include
the SPP technique in the proposed algorithm.
When it comes to comparing the YOLOv4’ and revised

YOLOv4-DenseNet with the YOLOv3 variants, YOLOv4’ is better
than the YOLOv3. YOLOv4-DenseNet is the best one in terms
of the result of F1-score and mAP-50. However, YOLOv3-
DenseNet remain outperforms YOLOv4’. YOLOv4-DenseNet
might be promising because this algorithm inherits the merit
of YOLOv4, DenseNet [22] captures more information, and we
remove some techniques that may decrease the solution quality.

2https://github.com/qqwweee/keras-yolo3

Most important of all, our proposed algorithm is assisted by
CSPDenseNet as the backbone. This strategy enhances the
prediction quality.

Among all the algorithms, VSDType1 and VSDType2 achieve
satisfactory results. However, VSDType4 does not perform well.
For this issue, there is much room for the VSDType4 becausemost
algorithms do not perform well. It is interesting to take a closer
look at the correct and incorrect classifications.

In general, the locations of VSD Type 4 are distributed at
variable sites within the muscular ventricular septum. Hence, it
is good challenge for deep learning algorithms. To explain the
other possible reason, we demonstrate the correct and incorrect
detection in Fig. 7 to Fig. 9, which presented the three types
done by our revised YOLOv4-DenseNet. The blue bounding box
is the ground truth marked by us. The bounding box in green
means the correct prediction done by the proposed algorithm.
Otherwise, the bounding box color is in red. Except the Fig. 7b
does not detect the VSDType1 at all, the bounding box in Fig.
8b and Fig. 9b might be too small. This problem may cause the
result is not satisfactory. In addition, the symptoms of VSD Type
4 are discovered at varied places. Hence, it is quite necessary to
increase the number of training dataset for VSD Type 4.

There are three ways of improving this situation. Firstly,
we should increase the number of figures to train the deep
learning model. Secondly, due to we set the threshold of IoU
to be 50, a smaller detected bounding box yields the incorrect
judgment. If we increase the IoU threshold, themAP result should
be increased. Secondly, the bounding boxes prepared by this
research might be too large. As a result, we should revise the
scale of the bounding boxes for the three types. In general, even
though the mAP-50 result of VSDType4 is not satisfactory, it
might remain useful for doctors to arrange the echocardiographic
images.

V. Conclusions

This paper might be the first one to study the CHD in ultra-
sound image object detection problem. The revised YOLOv4-
DenseNet algorithm is proposed in this paper. The reason for
proposing the revised YOLOv4-DenseNet is that some features
of YOLOv4 are not suitable for the ultrasound medical image,
such as the mosaic data augmentation, SPP, and Cosine anneal-
ing scheduler. Later on, due to DenseNet could extract more
features than DarkNet, we use CSPDenseNet as the backbone.
The proposed algorithm was further compared with the origi-
nal YOLOv3, YOLOV3-SPP, YOLOv3-DenseNet. We found the re-
vised YOLOv4-DenseNet is the best in terms of the F1-Score and
mAP-50. YOLOv4’ is better than YOLOv3; however, YOLOv4’ is
not better than YOLOv3-DenseNet, and YOLOv3-DenseNet-SPP.
These results indicated DenseNet as the backbone is effective.

For future research, we plan to improve the prediction quality
of VSD Type 4 and study more CHDs, such as Atrial septal
defect, Pulmonary stenosis, and Tetralogy of Fallot solved by our
proposed algorithm. The hyper-parameters are not optimized;
thus, we could use a genetic algorithm to do a global search.
Finally, there are some ways of improving the medical image
qualities [15], [25], [26]. when the Contrast Limited Adaptive
Histogram Equalization (CLAHE) was applied on COVID-19 in
chest X-Ray images, the detection accuracy was greatly improved
[15]. We attempt to employ the CLAHE (supported in OpenCV)
in ultrasound images without modifying the proposed algorithm.
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Table 1: Algorithm Models for the VSD

Algorithm Precision(%) Recall(%) F1-score(%) mAP-50
YOLOv3 99% 70% 81% 57.11%
YOLOv3-SPP 100% 77% 87% 59.54%
YOLOv3-Densenet 99% 84% 91% 71.56%
YOLOv3-Densenet-SPP 99% 83% 90% 70.56%
YOLOv4’ 98% 71% 82% 58.42%
Revised YOLOV4-Densenet 97% 85% 91% 72.61%
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