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Abstract

Electromagnetism-like algorithm (EM) is a population-based meta-heuristic which has been proposed to solve continuous problems
effectively. In this paper, we present a new meta-heuristic that applies the EM methodology to the single machine scheduling problem. To
the best of our knowledge, there are only few researches in solving the combinatorial optimization problem (COP) by EM. This research
attempts to employ the random-key concept combining with genetic operators in the hybrid algorithm to obtain the best/optimal sche-
dule for the single machine problems. This new approach attempts to achieve the convergence and diversity effects when it is iteratively
applied to solve the problem. This hybrid algorithm is tested on a set of standard test problems available in the literature. The compu-
tational results show that this hybrid algorithm performs better than the standard genetic algorithm.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Single machine scheduling problem with the objective to
minimize the total sum of earliness/tardiness is shown to be
NP-hard in the literature. The results derived from the lit-
erature are very significant since they not only provide the
insights into the single machine problem but also for more
complicated environment (Pinedo, 2002).

In this study we apply the random-key approach to rep-
resent a schedule and incorporate the EM methodology to
solve the single machine scheduling problem. In our algo-
rithm, the EM procedures are modified to obtain better
quality of solutions effectively. For example, the local
search operator perturbs the best solution and generates
a new solution. As long as the new one with a better solu-
tion than the worst one, we will replace the worst one with
the new one. In addition, Debels, Reyck, Leus, and Van-
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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houcke (2006) proposed a new method in calculating the
particle charge and exertion force. Both of them are
adopted in the research. According to the experimental
results, EM algorithm can provide good solution diversity
because there are only few overlapped or redundant solu-
tions. Consequently, a hybrid framework that integrates
EM algorithm with GA is proposed to quickly converge
the searching procedure by the selection and crossover
operators.

The rest of the paper is organized as follows: Section 2 is
the review of single machine problem; Section 3 is the def-
inition of single machine problem; the methodology is
described in Section 4. The experimental result is presented
in Section 5, which compared the EM approach with
genetic algorithms (GAs). Section 6 draws the discussion
and conclusions.
2. Literature review

Recently, EM type algorithm has been used for optimi-
zation problems and the approach starts with a randomly
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selected point from the feasible region for a given optimiza-
tion problem. EM employs an attraction–repulsion mecha-
nism to move points (particles) towards the optimal
solution. Each point (particle) is treated as a solution and
has a charge. A better solution contains a stronger charge.
The charge of each point relates to the objective function to
be optimized. EM method has been tested on available test
problems in Birbil and Fang (2003). In this study, it is
shown that EM is able to converge to the optimal solution
in less number of function evaluations without any first or
second order derivative information. A theoretical study of
this EM analysis and a modification for convergence to the
optimal solution are presented in Birbil et al. (2004). How-
ever, these above two studies only deal with continuous
optimization problems.

EM type algorithms are used to solve fuzzy relation
equations (Birbil & Feyzioglu, 2003), and to train artificial
neural network for textile retail operations (Wu, Yang, &
Wei, 2004), and also to obtain fuzzy if–then rules (Wu,
Yang, & Hung, 2005). Debels et al. (2006) integrated a
scatter search with EM for the solution of resource con-
straint project scheduling problems. This is the first paper
that includes an EM type methodology for the combinato-
rial optimization problem. Their experimental results show
that the hybrid method of incorporating EM type analysis
outperforms the current best solution available in the
literature.

Though EM algorithm is designed for solving optimiza-
tion problems with bounded variables, the algorithm can
be extended to solve combinatorial problem (COP). When
we extend the EM algorithm to combinatorial optimization
problems, the first important step is the representation of a
solution. Bean (1994) introduced a random-key (RK)
approach for real-coded GA for solving sequencing prob-
lem. Subsequently, numerous researchers show that this
concept is robust and can be applied for the solution of dif-
ferent kinds of COPs (Mendes, Gonc�alves, & Resende,
2005; Norman & Bean, 1999, 2000; Snyder & Daskin,
2006). Other applications of the random-key approach
are in solving single machine scheduling problems and per-
mutation flowshop problems using particle swarm optimi-
zation (PSO) algorithm by (Tasgetiren, Sevkli, Liang, &
Gencyilmaz, 2004, 2007).

In this paper, the random-key approach to represent a
schedule incorporated with the EM methodology are
applied to solve a single machine scheduling problem and
the objective is to minimize the total sum of earliness and
tardiness penalties. A detailed formulation of the problem
is described as follows: a set of n independent jobs
{J1,J2, . . .,Jn} has to be scheduled without preemptions
on a single machine that can handle at most one job at a
time. The machine is assumed to be continuously available
from time zero onwards and unforced machine idle time is
not allowed. Job Jj, j = 1,2, . . .,n becomes available for
processing at the beginning, requires a processing time
pj and should be completed on its due date dj. For any
given schedule, the earliness and tardiness of Jj can be,
respectively, defined as Ej = max{0,dj � Cj} and Tj =
max{0, Cj � dj}, where Cj is the completion time of Jj.
The objective is then to find a schedule that minimizes
the sum of the earliness and tardiness penalties of all jobsPn

j¼1ðajEj þ bjT jÞ, where aj and bj are the earliness and tar-
diness penalties of job Jj. The inclusion of both earliness
and tardiness costs in the objective function is compatible
with the philosophy of just-in-time production, which
emphasizes producing goods only when they are needed.
The early cost may represent the cost of completing a prod-
uct early, the deterioration cost for a perishable goods or a
holding (stock) cost for finished goods. The tardy cost can
represent rush shipping costs, lost sales and loss of good-
will. It is assumed that no unforced machine idle time is
allowed, so the machine is only idle if no job is currently
available for processing.

Some specific examples of production settings with these
characteristics are provided by Ow and Morton (1988),
Azizoglu, Kondakci, and Krica (1991), Wu, Storer, and
Chang (1993), Su and Chang (1998, 2001). The set of jobs
is assumed to be ready for processing at the beginning
which is a characteristic of the deterministic problem. As
a generalization of weighted tardiness scheduling, the prob-
lem is strongly NP-hard in Lenstra, Rinnooy Kan, and
Brucker (1977). To the best of our knowledge, the earlier
work in this problem is due to Chang and Lee (1992a,
1992b), Wu et al. (1993), Chang (1999). Belouadah et al.
(1992) dealt with the similar problem, however, with a dif-
ferent objective in minimizing the total weighted comple-
tion time and the problem is the same as discussed in
Hariri and Potts (1983). Kim and Yano (1994) discussed
some properties of the optimal solution, and these proper-
ties are used to develop both optimal and heuristic
algorithms. Valente and Alves (2003a, 2003b) presented a
branch-and-bound algorithm based on a decomposition
of the problem into weighted earliness and weighted tardi-
ness subproblems. Two lower bound procedures were pre-
sented for each subproblem, and the lower bound for the
original problem is then simply the sum of the lower
bounds for the two subproblems. In Valente and Alves
(2003b), they analyse the performance of various heuristic
procedures, including dispatch rules, a greedy procedure
and a decision theory search heuristic.

The early/tardy problem with equal release dates and no
idle time, however, has been considered by several authors,
and both exact and heuristic approaches have been pro-
posed. Among the exact approaches, branch-and-bound
algorithms were presented by Abdul-Razaq and Potts
(1988), Li (1997) and Liaw (1999). The lower bounding
procedure of Abdul-Razaq and Potts (1988) was based
on the subgradient optimization approach and the dynamic
programming state-space relaxation technique, while Li
and Liaw used Lagrangean relaxation and the multiplier
adjustment method. Among the heuristics, Ow and Mor-
ton (1988) developed several dispatch rules and a filtered
beam search procedure. Valente and Alves (2003b) pre-
sented an additional dispatch rule and a greedy procedure,
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and also considered the use of dominance rules to further
improve the schedule obtained by the heuristics. A
neighborhood search algorithm was also presented by Li
(1997).
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Fig. 1. An example of attract–repulse effect on particle number 3.
3. Introduction of an electromagnetism-like algorithm

EM simulates the attraction–repulsion mechanism of
electromagnetism theory which is based on Coulomb’s
law. Each particle represents a solution and the charge of
each particle relates to its solution quality. The better solu-
tion quality of the particle, the higher charge the particle
has. Moreover, the electrostatic force between two point
charges is directly proportional to the magnitudes of each
charge and inversely proportional to the square of the dis-
tance between the charges.1 The fixed charge of particle i is
shown as follows:

qi ¼ exp �n
f ðxiÞ � f ðxbestÞ

Pm
k¼1

ðf ðxkÞ � f ðxbestÞÞ

0
BB@

1
CCA; 8i: ð1Þ

where qi is the charge of particle i, f(xi), f(xbest), and
f(xk) denote the objective value of particle i, the best
solution, and particle k. Finally, m is the population
size.

The solution quality or charge of each particle deter-
mines the magnitude of an attraction and repulsion effect
in the population. A better solution encourages other par-
ticles to converge to attractive valleys while a bad solution
discourages particles to move toward this region. These
particles move along with the total force and so diversified
solutions are generated. The following formulation is the
force of particle i.

F i ¼
Xm

j–i

ðxj � xiÞ qiqj

kxj�xik2 if f ðxjÞ < f ðxiÞ

ðxi � xjÞ qiqj

kxj�xik2 else f ðxjÞP f ðxiÞ

8<
:

9=
;; 8i:

ð2Þ

Take the following figure for example. There are three par-
ticles and their own objective values are 20, 15, and 10,
respectively. Because particle 1 is worse than particle 3
while particle 2 is better than particle 3, particle 1 repre-
sents a repulsion force which is the F13 and particle 2
encourages particle 3 that moves to the neighborhood re-
gion of particle 2. Consequently, particle 3 moves along
with the total force F (see Fig. 1).

The fundamental procedures of EM include initialize,
local search, calculating total force, and moving particles.
The generic pseudo-code for the EM is as follows:
1 http://en.wikipedia.org/wiki/Coulomb’s_law.
Algorithm 1. EM()
1. initialize()
2. while (hasn’t met stop criterion) do

3. localSearch()
4. calculate total force F()
5. move particle by F()
6. evaluate particles()

End while
4. Methodology

This paper proposes a hybrid framework that com-
bines EM-like algorithm and genetic operator for solving
scheduling problems. The fundamental method is the
random-key technique that enables EM to solve this kind
of problems. Because the time-complexity is high and to
obtain better solution quality for EM-like meta-heuristic
with RK approach, some procedures like local search,
particle charge, and electrostatic force are modified.
The purpose of this hybrid framework is to take the
advantage of EM, which yields a high diversity popula-
tion, and GA operator let the algorithm converge faster.
Since the random-key technique is a fundamental method
in this paper, it is introduced in the beginning and the
later sections describe the detail approaches of the hybrid
framework and modified EM procedures.
4.1. A random-key method

In order to enable EM to solve scheduling problems, the
random-key technique is introduced. The concept of RK
technique is simple and can be applied easily. When we
obtain a k-dimension solution, we sort the value corre-
sponding to each dimension. Any sorting algorithm can
be used in the method and the paper uses quick sort
because its time-complexity is O (nlogn). After having a
sequence, we can use it to compute the objective function
value of this sequence.

Fig. 2 demonstrates a 10-dimension solution. Values
of dimension 1, 2 and 3 are 0.5, 9.6 and 3.0. The rest

http://en.wikipedia.org/wiki/Coulomb's_law
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Fig. 2. An example of attract–repulse effect on particle number 3.
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are shown in Fig. 2. Then, we apply the random-key
method to sort these values in ascending order. Thus
sequence at position 1 is 8 that mean we schedule job
8 in the beginning and job 2 is scheduled at the last posi-
tion. By the random-key method, the continuous EM
algorithm is able to be applied to solve different kind
of sequencing problems.

4.2. A hybrid framework combines the modified EM and

genetic operators

The hybrid framework includes modified EM proce-
dures and genetic operators, which adopts selection
and mating. The selection operator is binary tournament
and uniform crossover operator is applied in the frame-
work. Generic EM provides an excellent diversity while
GA is able to converge to a better solution quickly.
Thus the hybrid method takes the advantage of both
sides.

The hybrid system starts from determining which parti-
cle is moved by EM or mated by GA crossover operator. In
the paper by Debels et al. (2006), they suggested that a new
solution can be obtained from crossing by a better solution
selected from a binary tournament method. And EM is
used to move the inferior solution to a new position. This
hybrid approach may encourage solutions converging
toward better region quickly and to prevent from trapping
into the local optimal and still maintaining the population
diversity. The Algorithm 2 is the pseudo-code of the main
procedures of the hybrid framework.

Algorithm 2. A Hybrid Algorithm

1. initialize()
2. while (hasn’t met stop criterion) do

3. localSearch()
4. avg  calcAvgObjectiveValues()
5. for i = 1 to m do

6. if i – best and f(xi) < avg then
7. j  a selected particle to mate particle i by

binary tournament()
8. uniformCrossover(xi,xj)
9. else if f(xi)> avg then

10. CalcF and Move(xi)
11. end if

12. end for

13. find sequence by random-key method()
14. evaluate particles()
15. end while
According to the Algorithm 2 (Algorithm 2, line 1), we
initiate the particles in the population. Then, the local
search procedure is implemented before the EM proce-
dures and genetic operators. To determine which solution
is good or inferior one, an average objective value avg is
calculated. Then, if the solution is better than avg, this
solution is mated by the other better solution obtained
by binary tournament (Algorithm 2, line 7 and 8). Other-
wise, this solution is moved by modified EM algorithm
(Algorithm 2, line 10). After these particles are mated or
move along with their own total force, the next step is
to generate corresponding sequences by random-key tech-
nique. As soon as the sequence is obtained, we can obtain
objective value of the solution. Finally, because the initial-
ization, local search, particle charge, calculated total force,
and move are modified, we discuss them in the following
sections.
4.3. Initialization

The Algorithm 3 initiates particles in the popula-
tion. The initial value is between lower bound and
upper bound. The lower bound and upper bound are
set between [�11]. After all particles are generated,
the RK method is used to generate sequence of the
corresponding values of each particle. As soon as we
obtain the sequence, the objective values of these par-
ticles are evaluated and we can obtain current best
solution from these solutions (Algorithm 3, line 8
and 9).

Algorithm 3. Initialize()

1: for i = 1 to m do

2: for k = 1 to n do

3: k U (0, 1)
4: xi

k  lk þ kðuk � lkÞ
5: end for
6: end for

7: find sequence by random-key method
8: evaluate particles ()
9: xbest argmin{f(xi),"i}
4.4. Local procedure

The algorithm that perturbs each dimension of the best
solution (Algorithm 4, line 5–12) then finds its correspond-
ing sequence and their objective value. This new solution
will replace the worst solution when its objective value is
better than the worst solution (Algorithm 4, line 12–15).



Table 1
The parameter settings of the EM algorithm

Factor Treatments

Population size 50 and 100
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Therefore, it attempts to improve average solution quality
iteratively for LSITER times. This procedure may find a
better solution to substitute the current best solution
(Algorithm 4, line 16–20).
(popSize)
Number of local

search (LS)
10 and 25

Methods 1. Modified EM algorithm
2. Hybrid model (modified EM algorithm and
genetic operators)

Job instance (size) 20, 30, 40, 50
Number of examined

solutions
100,000

Number of
replications

30
Algorithm 4. Local (LSITER)

1: Length argmax{uk � lk, "k}
2: i argmin{f(xi), "i}
3: for j = 1 to LSITER do

4: y xi

5: for k = 1 to n do

6: k U (0, 1)
7: if U (0, 1) > 0.5 then

8: yk yk + k (Length)
9: else

10: yk yk � k (Length)
11: end if

12: end for

12: l = argmax{f(xi), "i}
13: if f (y) < f(xl) then
14: xl y

15: end if

16: if f (y) < f(xi) then

17: xbest y

18: xi y

19: i l

20: end if

21: end for
4.5. Particle charges, electrostatic force and move

The study uses the total force algorithm proposed by
Debels et al. (2006), which determines the force exerted
on particle i by point j that does not use the fixed charge
of qi and qj. Instead, qij depends on the relative deviation
of f(xi) and f(xj). Thus this particle charge is calculated as
follows:

qij ¼
f ðxiÞ � f ðxjÞ

f ðxworstÞ � f ðxbestÞ ð3Þ

If the objective value f(xi) is larger than f(xj), particle j will
attract particle i. On the other hand, when f(xi) < f(xj), a
repulsion effect is occurred. There is no action when
f(xi) = f(xj) because qij is equal to zero. After the qij is ob-
tained, the force on particle i by particle j is
F ij ¼ ðxj � xiÞ � qij ð4Þ
2 The name of each instance for 20, 30, 40, and 50 jobs are sks222a,
sks322a, sks422a, and sks522a, respectively.
Thus the particle xi moves to xi + Fij in the direction of
particle xj. This method is similar to the path relinking
method by Glover, Laguna, and Marti (2000) which grad-
ually moves from one point to another by Debels et al.
(2006).
Algorithm 5. CalcF and Move(xi)

1: Fi 0
2: for j = 1 to m do

3: if xi – xj then

4: qij  f ðxiÞ�f ðxjÞ
f ðxworstÞ�f ðxbestÞ

5: Fij (xj � xi)qij

6: xi xi + Fij

7: end if

8: end for

Finally, in order to maintain the feasibility of each solu-
tion, we check the boundary feasibility by the Algorithm 6.

Algorithm 6. checkBoundary()

1: for i = 1 to m do

2: for j = 1 to n do

4: if xij > uj then

5: xij uj

6: else if xij < lj then

7: xij lj
7: end if
8: end for

9: end for
5. Experimental results

The study proposed a hybrid framework that combines
modified EM meta-heuristic and genetic operator in solv-
ing the single machine problem in minimizing the earliness
and tardiness penalty. In order to evaluate the performance
of this hybrid framework, it is compared with GA which is
a well known meta-heuristic. Across these experiments, we
adopt the scheduling instances of Sourd and Sidhoum
(2005) whose job size are 20, 30, 40, and 50.2 Each
experiment is replicated 30 times and the stopping criterion
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is to fix the number of examined solutions that is set to
100,000.

Before we validate these methods and to compare the
performance between the proposed algorithm and GA, a
design of experiment (DOE) is carried out to examine the
parameter settings of the hybrid framework. The DOE
result of it is shown in Section 5.1. Then, we compare the
performance of the hybrid framework with GA under the
job-dependent due date. It is presented in Section 5.2.
Table 2
The ANOVA result of parameter configuration

Source DF Seq SS

Size 3 1.11E+11
popSize 1 9,147,142
LS 1 6,962,894
Methods 1 1.34E+08
Size * popSize 3 8,514,003
Size * LS 3 3,596,976
Size * Methods 3 1.02E+08
popSize * LS 1 730,291
popSize * Methods 1 17,670,972
LS * Methods 1 7,113,306
Size * popSize * LS 3 592,779
Size * popSize * Methods 3 15,263,422
Size * LS * Methods 3 9,831,152
popSize * LS * Methods 1 777,051
Size * popSize * LS * Methods 3 1,454,635
Error 936 1.7E+08
Total 967 1.11E+11
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Fig. 3. The interaction plot of the par
5.1. Design of experiment for EM in single machine

scheduling problems

There are two parameters that should be tuned in EM
algorithm. In continuous EM, Birbil and Fang (2003) sug-
gested a population size that is four times the dimensions.
However, since there is no result for this problem, this
experiment fills up the gap which identifies the appropriate
population size. Secondly, the local search method is mod-
Adj SS Adj MS F P

1.11E+11 3.7E+10 203188.7 0.000
9,298,221 9,298,221 51.09 0.000
7,063,195 7,063,195 38.81 0.000
1.36E+08 1.36E+08 745.04 0.000
8,514,003 2,838,001 15.59 0.000
3,596,976 1,198,992 6.59 0.000
1.02E+08 34,062,150 187.16 0.000
741,170 741,170 4.07 0.044
17,953,144 17,953,144 98.65 0.000
7,225,338 7,225,338 39.7 0.000
592,779 197,593 1.09 0.354
15,263,422 5,087,807 27.96 0.000
9,831,152 3,277,051 18.01 0.000
783,908 783,908 4.31 0.038
1,454,635 484,878 2.66 0.047
1.7E+08 181,995
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Table 3
The parameter settings of the hybrid algorithm

Factor Treatments

Population size
(popSize)

50

Number of local
search (LS)

25

Methods Hybrid model (modified EM algorithm and
genetic operators)

Table 6
The comparison between the hybrid algorithm and GA

Duncan grouping Mean N Algorithm

A 18575.3 120 SGA
B 18462.07 120 Hybrid algorithm
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ified and the number of local search is unknown. Thus the
number of local search is considered in the DOE
experiment.

Except for the parameter setting of EM algorithm, the
study includes the comparison of the performance of
hybrid model and the modified EM algorithm that works
alone. The parameter setting is shown in Table 1 and the
AVNOVA result is in Table 2.

If the confidence level a is set to 0.05, the main effect fac-
tors Size, popSize, LS, and method are significant. Further-
more, their two factors and three factors interaction effects
are also significant. There is only one exception that is the
combination of Size, popSize, and LS. Consequently, we
analyze their interaction effect first by Fig. 3.

The interaction plot shows when the population size is
set to 50 and the number of local search is assigned 25, it
gets better solution quality. Most important of all, the
hybrid model is better than the modified EM that works
alone. Thus it encourages us to adopt the hybrid frame-
work compared with GA.

Based on the initial parameter settings, a second time
DOE is carried out. Because these factors don’t cause
any statistics significance, the paper adopts the configura-
Table 5
The comparison between the hybrid algorithm and GA

Source DF Seq SS Adj

Algorithm 1 769,307 769,
Size 3 2.48E+10 2.48
Algorithm * Size 3 2,238,570 2,23
Error 232 36,000,870 36,0
Total 239 2.49E+10

Table 4
The comparison between the hybrid algorithm and GA

Job GA

Min Mean Max Secs

20 5286 5401.7 5643 1.05
30 11,623 12,066 12,916 1.68
40 25,656 26,211 27,462 2.45
50 29,485 30,623 32,340 3.54
60 43,930 45,018 46,017 3.64
90 91,516 93,966 96,966 7.36
tion from our first DOE experiment. The final parameter
setting of this hybrid framework is shown in Table 3.
5.2. The comparison between hybrid framework and GAs

We consider the scheduling problem under the job-
dependent due date without learning consideration first.
The proposed hybrid framework is compared with genetic
algorithm. The parameter of GA includes crossover rate,
mutation rate, and population size, which are set to 0.8,
0.3, and 100, respectively. The above GA parameter set-
tings and experimental result of GA are adopted from
our previous research in Chang, Chen, and Fan (2008).
The comparison results are presented in Table 4 and the
hybrid framework outperforms GA in average across all
instances, except for 60 job problem.

In order to compare the performance of the two algo-
rithms, ANOVA is applied to test if there is any difference
between these two algorithms. The result of ANOVA is
shown in Table 5 and it shows there is significant difference
between these two algorithms. As shown in Table 6, the
Duncan test also presents the SGA and Hybrid Algorithm
that are in different groups. Therefore, the proposed algo-
rithm outperforms the SGA. Finally, the the box-plot of
these two algorithms is shown in Fig. 4. It indicates the
SS Adj MS F P

307 769,307 4.96 0.027
E+10 8.28E+09 53332.74 0
8,570 746,190 4.81 0.003
00,870 155,176

Hybrid algorithm

Min Mean Max Secs

73 5287 5331.8 5464 1.9542
38 11,584 11,794 12,223 2.8208
48 25,706 25,933 26,294 3.3386
06 29,490 29,902 30,447 4.1182
05 43,873 45,138 47,820 12.07
11 91,133 93,905 99,297 17.535
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range of the Hybrid algorithm is less than SGA. However,
both algorithms have outlier values.

6. Discussion and conclusions

Owing to the development of a random-key method,
the EM algorithm is able to be applied in solving the
sequencing problem. To improve the performance of
the EM algorithm, a hybrid method is developed in this
research which combines EM algorithm and genetic
operators together. The purpose of this hybrid method
is to take advantage of the EM algorithm and genetic
operators applied in genetic algorithms. The hybrid
method can provide better solution diversity and good
convergence ability during the evolutionary procedure,
respectively. A DOE experiment shows the performance
of hybrid method is better than that of the EM algo-
rithm alone.

According to experimental results, the hybrid method
outperforms SGA in most of the instances. However,
since random-key technique has to sort out each final
solution in order to generate a feasible sequence, it takes
O (nlogn) time-complexity in the computational times
while GA is able to provide a sequence representation
through the chromosome directly. As a result, the com-
putational times of the hybrid method is higher than that
of GA. For future research, a better local search such as
variable neighborhood search (VNS) can be applied in
EM which may further improve the solution quality.
Furthermore, since EM can be extended to multi-objec-
tive algorithm, it is an entirely new research area to be
explored.
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