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Abstract

In this paper, a hybrid genetic algorithm is developed to solve the single machine scheduling problem with the objective to
minimize the weighted sum of earliness and tardiness costs. First, dominance properties of (the conditions on) the optimal
schedule are developed based on the switching of two adjacent jobs i and j. These dominance properties are only necessary
conditions and not sufficient conditions for any given schedule to be optimal. Therefore, these dominance properties are
further embedded in the genetic algorithm and we call it genetic algorithm with dominance properties (GADP). This GADP
is a hybrid genetic algorithm. The initial populations of schedules in the genetic algorithm are generated using these dom-
inance properties. GA can further improve the performance of these initial solutions after the evolving procedures. The per-
formances of hybrid genetic algorithm (GADP) have been compared with simple genetic algorithm (SGA) using benchmark
instances. It is shown that this hybrid genetic algorithm (GADP) performs very well when compared with DP or SGA alone.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, a deterministic single machine scheduling problem without release date is investigated and the
objective is to minimize the total sum of earliness and tardiness penalties. A detailed formulation of the problem
is described as follows: a set of n independent jobs {J1,J2, . . . ,Jn} has to be scheduled without preemptions on a
single machine that can handle at most one job at a time. The machine is assumed to be continuously available
from time zero onwards and unforced machine idle time is not allowed. Job Jj, j = 1,2, . . . ,n becomes available
for processing at the beginning, requires a processing time pj and should be completed on its due date dj. For any
given schedule, the earliness and tardiness of Jj can be, respectively, defined as Ej = max(0,d � Cj) and
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Tj = max(0,Cj � d), where Cj is the completion time of Jj. The objective is then to find a schedule that minimizes
the sum of the earliness and tardiness penalties of all jobs

Pn
j¼1ðajEj þ bjT jÞwhere aj and bj are the earliness and

tardiness penalties of job Jj. The inclusion of both earliness and tardiness costs in the objective function is com-
patible with the philosophy of just-in-time production, which emphasizes producing goods only when they are
needed. The early cost may represent the cost of completing a product early, the deterioration cost for a perish-
able goods or a holding (stock) cost for finished goods. The tardy cost can represent rush shipping costs, lost
sales and loss of goodwill. It is assumed that no unforced machine idle time is allowed, so the machine is only
idle if no job is currently available for processing. This assumption reflects a production setting where the cost of
machine idleness is higher than the early cost incurred by completing any job before its due date, or the capacity
of the machine is limited when compared with its demand, so that the machine must indeed be kept running.

Some specific examples of production settings with these characteristics are provided by Ow and Morton
[1], Azizoglu et al. [2], Wu et al. [3] and Su and Chang [4,5]. The set of jobs is assumed to be ready for pro-
cessing at the beginning which is a characteristic of the deterministic problem. As a generalization of weighted
tardiness scheduling, the problem is strongly NP-hard in Lenstra et al. [6]. To the best of our knowledge, the
earlier work in this problem is due to Chang and Lee [7,8], Wu et al. [3], and Chang [9]. Belouadah et al. [10]
dealt with the similar problem however with a different objective in minimizing the total weighted completion
time and the problem is the same as discussed in Hariri and Potts [11]. Kim and Yano [12] discussed some
properties of the optimal solution, and these properties are used to develop both optimal and heuristic algo-
rithms. Valente and Alves [13] presented a branch-and-bound algorithm based on a decomposition of the
problem into weighted earliness and weighted tardiness subproblems. Two lower bound procedures were pre-
sented for each subproblem, and the lower bound for the original problem is then simply the sum of the lower
bounds for the two subproblems. In Valente and Alves [14], they analyzed the performance of various heuristic
procedures, including dispatch rules, a greedy procedure and a decision theory search heuristic.

The early/tardy problem with equal release dates and no idle time, however, has been considered by several
authors, and both exact and heuristic approaches have been proposed. Among the exact approaches, branch-
and-bound algorithms were presented by Abdul-Razaq and Potts [15], Li [16] and Liaw [17]. The lower bound-
ing procedure of Abdul-Razaq and Potts was based on the subgradient optimization approach and the
dynamic programming state-space relaxation technique, while Li and Liaw used Lagrangean relaxation and
the multiplier adjustment method. Among the heuristics, Ow and Morton [18] developed several dispatch rules
and a filtered beam search procedure. Valente and Alves [14] presented an additional dispatch rule and a
greedy procedure, and also considered the use of dominance rules to further improve the schedule obtained
by the heuristics. A neighborhood search algorithm was also presented by Li [16].

Genetic algorithm is a well-known technique and is used for many combinatorial optimization problems as
in Holland [19], Goldberg [20] and David [21]. A good discussion of using genetic algorithms to problems that
are encountered in production systems and operations research areas are available in Michalewicz [22]. Many
researchers Chang et al. [23–25] started using genetic algorithms for scheduling problems and a survey of
genetic algorithms for job-shop scheduling is given in Chang et al. [26].

In this paper, we present a hybrid genetic algorithm approach that considers the single machine scheduling
problem with job dependent penalties. First, we derive the dominance properties of (the conditions on) the opti-
mal schedule based on the processing times, due dates, and the job dependent penalties. These dominance prop-
erties are only necessary conditions and not sufficient conditions for any given schedule to be optimal. In our
hybrid genetic algorithm, we start with a randomly generated population of solutions. First, we use the dom-
inance properties to obtain better starting solutions for the genetic algorithm. We call this a genetic algorithm
with dominance properties (GADP). This GADP is a hybrid genetic algorithm and the dominance properties
are applied to generate initial solutions to obtain better starting schedules. We have compared the performance
of hybrid genetic algorithm (GADP) with simple genetic algorithm (SGA). We present the results to show that
this hybrid genetic algorithm (GADP) performs very well for the test problems available in the literature.

2. Dominance properties of two adjacent jobs

In this section, we derive the dominance properties for two adjacent jobs (i and j), which has distinct due
dates (di and dj), earliness penalties (ai and aj), and tardiness penalties (bi and bj). The processing time of these
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jobs are pi and pj. The dominance properties provide the precedence relationship between any two adjacent
jobs in a schedule. In the optimal schedule, all the adjacent jobs will satisfy the dominance properties.

We consider a schedule P, in which two adjacent jobs i and j are in positions k and k + 1, respectively. We
consider the objective function Z(P) for schedule P. We rewrite the objective function Z(P), in such a way
that only terms corresponding to jobs (i and j) in positions k and k + 1 are present explicitly in the objective
function Z(P). The other terms are absorbed in constants defined below
ðZðPÞ ¼ G1 þ G2 þ cijdi � fij þ cjjdj � fjj; ð1Þ
where
G1 ¼
Xk�1

l¼1

c1jdl � flj;

G2 ¼
Xn

l¼kþ2

c1jdl � flj:
In the above expressions, the value of cp is defined as follows:

� cp = ap, if dp > fp; this means that job p is an early job.
� cp = bp, if dp < fp; this means that job p is a tardy job.
� cp = 0, if dp = fp; this means that job p is an on time job.

Consider schedule Px given as
Px ¼ f� � � � � � ij � � � � � �g:

Consider schedule Px, the jobs i and j are in positions k and k + 1, respectively. In schedule Px, ‘*’ denotes

some other jobs (other than i and j) are in that positions 1 to n (other than k and k + 1). In schedule Px, the
finish time (fi) of job i is (A + pi) and finish time (fj) of job j is (A + pi + pj). The value of A is the finish time of
the job in position (k � 1) and is
A ¼
Xk�1

l¼1

pi:
When the jobs i and j are interchanged schedule Px, the resulting schedule is Py and is
Py ¼ f� � � � � � ji � � � � � �g:

Note that in schedule Py only the jobs i and j are interchanged and all other jobs are in the same positions

as in schedule Px. In Py, the finish time (fj) of job j is (A + pj) and finish time (fi) of job i is (A + pj + pi). We
will compare the schedules Px and Py and find the conditions under which Px is better than Py. These con-
ditions are the dominance properties.

In schedule Px, the jobs i and j are in one of the following statuses:

1. Job i is early and jobs j is early.
2. Job i is tardy and jobs j is tardy.
3. Job i is early and jobs j is tardy.
4. Job i is tardy and jobs j is early.
5. Job i is early and jobs j is on time.
6. Job i is on time and jobs j is early.
7. Job i is tardy and jobs j is on time.
8. Job i is tardy and jobs j is on time.
9. Job i is on time and jobs j is on time.

Let P be the sum of processing time of all the jobs ðP ¼
Pn

j¼1pjÞ. We assume that dj < P, for all jobs
(j = 1,2, . . . ,n). We discuss the case when assumption is not true later. With this assumption, we consider
the above mentioned statuses one by one in detail and derive the dominance properties.
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Status 1: Consider two adjacent early jobs i (in position k) and j (in position k + 1) in the schedule Px. This
two adjacent jobs are early means that di > (A + pi) and dj = (A + pi + pj) This dj = (A + pi + pj) implies that
dj > (A + pj). Hence there are two possibilities on di as given below

� Possibility (i). di > (A + pi + pj).
� Possibility (ii). di < (A + pi + pj).

Possibility (i). Here in schedule Px jobs i and j (in positions k and k + 1) are also early jobs. After inter-
change, in schedule Py, the jobs j and i (in positions k and k + 1) are also early jobs. This means that
di > (A + pi), dj > (A + pj), di > (A + pi + pj) and dj > (A + pi + pj). The total absolute deviation Z(Px), Z(Py)
for schedules Px, Py are
ZðPxÞ ¼ G1 þ G2 þ aiðdi � A� piÞ þ ajðdj � A� pi � pjÞ;
ZðPyÞ ¼ G1 þ G2 þ ajðdj � A� pjÞ þ aiðdi � A� pj � piÞ:
We now derive the condition under which Z(Px) 6 Z(Py). Let X = Z(Py) � Z(Px) and is given by
X ¼ �aipj þ ajpi:
From the above expression, we see that X P 0 when the following condition is satisfied:
pi

ai
P

pj

aj
:

From the above condition, we see that if X > 0, then schedule Px is better than schedule Py; i.e.,
Z(Px) < Z(Py). If X = 0 then Z(Px) = Z(Py). For this case, job i will come before job j only when pi

ai
P pj

aj
.

Based on this analysis, we state the following property.

Property 1. In schedule Px, for two adjacent early jobs i (in position k) and j (in position k+ 1), and if

di > A + pi + pj, then schedule Px is better than schedule Py, only when
pi
ai

P pj

aj
.

Conjecture. Now, we discuss a special case when di = A + pi + pj. Here in the schedule Px jobs i and j (in posi-

tions k and k + 1) are early jobs. After interchange, in schedule Py, the job j (in position k) is an early job, and job

i (in position k + 1) is an on time job. This means that di > A + pi, di > A + pj, di = A + pi + pj and di > A +

pi + pj. Here also, job i will come before job j only when pi
ai

P pj

aj
.

This can be easily proved by considering the fact that di = A + p i + pj in the above analysis.
Fig. 1 is a pictorial representation of the statuses of two adjacent jobs i and j in schedule Px. Fig. 1 is in

(di,dj) plane. For any two adjacent jobs i and j, we know the values of A, pi, pj, di, and dj. Once we know these
values, we can see that this is a point in (di,dj) plane. Then, the finish time of job i in schedule Px is (A + pj)
and the finish time of job j is (A + pi + pj). They are marked in di axis. Similarly, in schedule Py the finish time
of job j is (A + pj) and the finish time of job i is (A + pi + pj). They are marked in dj axis.

Hence, in Fig. 1, all the nine status are shown. Also in Fig. 1, the property for schedule Px has to be better
than schedule Py, is also given. Note that this property is true only when di > A + pj, dj > A + pj,
di P A + pi + pj, and dj > A + p i + pj. Region R1 in which this property is true is shown in Fig. 1. This above
conjecture, when di = A + pi + pj is a point on the left side boundary of region R1.

Note that after interchange, in schedule Py, job j cannot be a tardy job or an on time job because (dj > A +
pi + pj), which implies that (dj > A + pj).

Possibility (ii). Here in schedule Px jobs i and j (in positions k and k + 1) are early jobs. After interchange,
in schedule Py, the job j (in position k) is an early job and job i (in position k + 1) is a tardy job. This means
that di > A + pj, dj > A + pj, di < A + pi + pj, and dj > A + pi + pj. The total absolute deviation Z(Px), Z(Py)
for schedules Px, Py are
ZðPxÞ ¼ G1 þ G2 þ aiðdi � A� piÞ þ ajðdj � A� pi � pjÞ;
ZðPyÞ ¼ G1 þ G2 þ ajðdj � A� pjÞ þ aiðAþ pj þ pi � diÞ:
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Fig. 1. Pictorial representation of various status of two adjacent jobs i and j.
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We now derive the condition under which Z(Px) 6 Z(Py). For this purpose, we obtain the value of
Z(Py) � Z(Px). Let X = Z(Py) � Z(Px) and is given by
X ¼ ajpi þ bipj þ ðai þ biÞðAþ pi � diÞ:
From the above expression, we see that X P 0 when the following condition is satisfied:
di 6 Aþ pi

ai þ bi þ aj

ai þ bi

� �
þ pj

bi

ai þ bi

� �� �
:

From the above condition, if X > 0, then schedule Px is better than schedule Py; i.e., Z(Px) < Z(Py). If

X = 0 then Z(Px) = Z(Py). For this case, job i will come before job j only when di 6 fAþ pið
aiþbiþaj

aiþbi
Þþ

pjð bi
aiþbi
Þg. Based on this analysis, the following property exists.

Property 2. In schedule Px, for two adjacent early jobs i (in position k) and j (in position k + 1), and if

di < A + pi + pj, then schedule Px is better than schedule Py only when di 6 fAþ pið
aiþbiþaj

aiþbi
Þ þ pjð

bi
aiþbi
Þg.

Conjecture. Now, we discuss a special case when di = (A + pi + pj). Here in schedule Px job i and j (in positions k

and k + 1) are early jobs. After interchange, in schedule Py, the job j (in position k) is an early job, and job j (in

position k + 1) is an on time job. This means that di > (A + pi), dj > (A + pj), di = (A + pi + pj) and dj > (A +

pi + pj). Here also, job i will come before job j only when pi
ai

P pj

aj
. This can be easily proved by considering the fact

that di=(A + pi + pj) in the above analysis.
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Note that this property is true only when di > (A + pi), dj > (A + pj), di 6 (A + pi + pj), and dj > (A +
pi + pj). Region R2 in which this property is true is shown in Fig. 1. The above conjecture di = (A +
pi + pj) is a point on the right side boundary of region R2 and is also the left side boundary of region

R1. Hence, the same property as in Property 1, i.e., pi
ai

P pj

aj
, is derived.

Status 2: Consider two adjacent tardy jobs i (in position k) and j (in position k + 1) in the schedule Px. This
two adjacent jobs are tardy means that di < (A + pi) and dj < (A + pi + pj). This di < (A + pi) implies that
di < (A + pi + pj). Hence, there are two possibilities on dj as given below

� Possibility (i). dj < (A + pj).
� Possibility (ii). dj > (A + pj).

Possibility (i). Here in schedule Px jobs i and j (in positions k and k + 1) are tardy jobs. After interchange,
in schedule Py, the jobs j and i (in positions k and k + 1) are also tardy jobs. This means that di < (A + pi),
di < (A + pj) which implies di < (A + pi + pj) and dj < (A + pi + pj). The total absolute deviation Z(Px),
Z(Py) for schedules Px, and Py are
ZðPxÞ ¼ G1 þ G2 þ biðAþ pi � diÞ þ bjðAþ pi þ pj � djÞ;
ZðPyÞ ¼ G1 þ G2 þ bjðAþ pj � djÞ þ biðAþ pj þ pi � diÞ:
We now derive the condition under which Z(Px) 6 Z(Py). For this purpose, we obtain the value of
Z(Py) � Z(Px). Let X = Z(Py) � Z(Px) and is given by
X ¼ �bjpi þ bipj:
Form the above expression, we see that X P 0 when the following condition is satisfied:
pi

bi
6

pj

bj
:

Form the above condition, if X > 0, then schedule Px is better than schedule Py; i.e., Z(Px) < Z(Py). If

X = 0 then Z(Px) = Z(Py). For this case, job i will come before job j only when pi
bi
6

pj

bj
. Based on this analysis,

we state the following property.

Property 3. In schedule Px, for two adjacent tardy jobs i (in position k) and j (in position k + 1), and if

dj < (A + pj), then schedule Px is better then schedule Py only when
pi
bi
6

pj

bj
.

Conjecture. Now, we discuss a special case when dj = (A + pj). Here in the schedule Px jobs i and j (in positions k

and k + 1) are tardy jobs. After interchange, in schedule Py, the job j (in positions k) is an on time job, and job i (in

positions k + 1) is an tardy job. This means that di < (A + pi), dj = (A + pj), di < (A + pi + pj) and dj < (A +

pi + pj). Here also, job i will come before job j only when pi
bi
6

pj

bj
. This can be easily proved by considering the fact

dj = (A + pj) in the above analysis.

Note that this property is true only when di < (A + pi), dj = (A + pj), di < (A + pi + pj) and dj < (A +
pi + pj). The region R3 in which this property is true is shown in Fig. 1. This above conjecture dj = (A + pj)
is a point on the upper boundary of the region R3.

Note that after interchange, in schedule Py, job i cannot be an early job or an on time job because
di < (A + pi), which implies that di < (A + pi + pj).

Possibility (ii). Here in schedule Px jobs i and j (in positions kand k + 1) are tardy jobs. After interchange,
in schedule Py, the job j (in position k) is an early job and job j (in position k + 1) is a tardy job. This means
that di < (A + pi), dj > (A + pj), di < (A + pi + pj), dj < (A + pi + pj). The total absolute deviation Z(Px), Z(Py)
for schedules Px, Py are
ZðPxÞ ¼ G1 þ G2 þ biðAþ pi � diÞ þ bjðAþ pi þ pj � djÞ;
ZðPyÞ ¼ G1 þ G2 þ ajðdj � A� pjÞ þ biðAþ pj þ pi � diÞ:
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We now derive the condition under which Z(Px) 6 Z(Py). For this purpose, we obtain the value of
Z(Py) � Z(Px). Let X = Z(Py) � Z(Px) and is given by
X ¼ �bjpi þ bipj þ ðaj þ bjÞðdj � A� pjÞ:
From the above expression, we see that X P 0 when the following condition is satisfied:
dj P Aþ
pjðaj þ bj � biÞ þ bjpi

ðaj þ bjÞ

( )
:

From the above condition, we see that if X > 0, then the schedule Px is better than the schedule Py; i.e.,
Z(Px) < Z(Py). If X = 0 then Z(Px) = Z(Py). For this case, job i will come before job j only when

dj P fAþ pjðajþbj�biÞþbjpi

ðajþbjÞ
g.

Based on this analysis, Property 4 can also be stated. However, to simplify the proving procedures the rest
of the properties are listed in Appendix A.

3. Hybrid genetic algorithm

We now describe our hybrid genetic algorithm employed in this study. It is known that genetic algorithm
with a good initial solution will give better results in less computation time. In order to obtain good initial
solution, these dominance properties derived are applied.

Algorithm for generating initial schedules: Our algorithm is basically an adjacent pair wise interchange pro-
cedure. We start with a random initial schedule. In this schedule, we consider two adjacent jobs i and j. For
these two adjacent jobs, the values of pi, pj, A, di, and dj are known. These values correspond to a point in one
of the nine regions in Fig. 1.

Once, we know the region in Fig. 1, we know the property these adjacent jobs have to satisfy. If this property is
not satisfied, we interchange the jobs i and j. At the termination, we obtain a resulting schedule in which all the
adjacent jobs satisfy their corresponding properties. We know that these properties are only necessary conditions
and not sufficient conditions for any given schedule to be optimal. So, the resulting schedule may not be an opti-
mal schedule but the resulting schedule is a better schedule than the random initial schedule.

In our hybrid genetic algorithm, we start with a randomly generated population of solutions. First, we apply
our algorithm which uses the dominance properties to obtain better starting solutions for the genetic algorithm.
We call this a genetic algorithm with dominance properties (GADP). This GADP is a hybrid genetic algorithm.
By hybrid, we mean that in our GADP, the dominance properties are applied to the randomly generated initial
solutions to obtain better starting schedules. The pseudo code of GADP is listed as follows:

Pseudo Code of GADP:

MainProcedure( )

Population: The population used in the Genetic Algorithm
Generations: The number of generations
1. Initiate Population

2. ConstructInitialPopulation(Population)
3. RemovedIdenticalSolution( )
4. counter 0
5. while counter < generations do

6. Evaluate Objectives and Fitness (i)
7. FindPareto(i)
8. Selection with Elitism Strategy(i)
9. Crossover(i)

10. Mutation(i)
11. Replacement(i)
12. counter counter + 1
13. end while
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k: The number of initial solutions

initialSolution: We generate the random initial solutions.
1. for i = 1 to k
2. set initialSolution Random_Solution ()
3. set Population(k) DominanceProperties (initialSolution)
4. end for
DominanceProperties (schedule)

Iter: The number of iterations
Pos: The position in the sequence
n: the number of jobs
schedule: the sequence of the jobs
preSchedule: the previous schedule of the jobs
1. calculateFinishTime( )
2. set preSchedule  schedule

3. for i = 1 to Iter

4. for Pos = 1 to 2
5. for j = Pos to n � 1
6. job1 = schedule [j]
7. job2 = schedule [j + 1]
8. isSatisfyProperty = checkProperty (job1, job2)
9. if(isSatisfyProperty == false)

10. swapTwoJobs(j, j + 1);
11. updateFinishTime( )
12. end if

13. j j + 1
14. end for
15. end for

16. if (isIdenticalSolution (schedule,preSchedule))
17. break;
18. else

19. set preSchedule schedule

20. end if

21. end for
Detailed implementations of the crossover and mutation operations are described as follows:
Crossover Operation: Two-point crossover
In the crossover step, two chromosomes are randomly selected and a random number rc is generated first. If
rc is smaller than Pc, then crossover implements on this pair, else no crossover.
Detailed procedures of a two-point crossover are described as follows:

1. Select two chromosomes Parent 1 and Parent 2.
2. Randomly assign two cutting points, suppose the cutting points are located at ith and jth positions, respec-

tively. Genes beyond the cutting points in Parent 1 are directly duplicated to the Offspring.
3. The vacant positions in the Offspring are duplicated from Parent 2.

For example, two 10-job chromosomes for Parent 1 and Parent 2 are shown in Fig. 2. Two cutting points
are assigned at position 3 and position 7. Jobs before position 3 and jobs after position 7 in Parent 1 are dupli-
cated to the tails of the new chromosome, i.e., the Offspring, as shown in Fig. 3. The sequences of vacant posi-
tions in the middle of Offspring are duplicated from Parent 2. Then the crossover operation is finished and a
new chromosome generated, i.e., Offspring, is shown in Fig. 4.



↓ ↓
Parent 1 1 2 3 4 5 6 7 8 9 10 

Parent 2 1 6 4 7 2 3 9 10 8 5 

Fig. 2. Two chromosomes for Parent 1 and Parent 2.

Offspring 1 2 8 9 10 

Fig. 3. Duplication of genes in two tails from Parent 1.

Offspring 1 2 6 4 7 3 5 8 9 10 

Fig. 4. Duplication of genes in the middle from Parent 2.
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Mutation Operation: Swap mutation
In the mutation step, two chromosomes are randomly selected and a random number rm is generated first.

If rm is smaller than Pm, mutate the selected chromosomes, else no mutation.
Swap mutation is to randomly select two positions in a chromosome and interchange the two positions. For

example, position 1 and 2 are assigned as shown in Fig. 5. Before mutation, the sequence is 2-9-5-3-4-8-10-6-7-
1. The corresponding jobs at position 1 and 2 are job 9 and job 10. Then the two jobs are interchanged and the
sequence is 2-10-5-3-4-8-9-6-7-1 after mutation (see Fig. 5).
4. Experimental results

In the earlier studies Sourd et al. [27] and Sourd et al. [28], single machine scheduling problem is considered,
and many test problems are provided with job dependent 20 earliness and tardiness penalties. These test
problems are generated by Sourd et al. in the following manner and are available in the internet. For a given
value of n (number of jobs), the processing times are generated randomly from the uniform distribution
U = [10; 100]. The due dates dj are generated from U = [dmin,dmin,+qP], where dmin = MAX(0,P(s � q/2))
and P ¼

Pn
j¼1pj. The two parameters q and s are tardiness and range parameters. These test problems are

available in Sourd et al. for n 2 {20,30,40,50}, s 2 {0.2, 0.3, 0.4,0.5, 0.6,0.7, 0.8,0.9} and for the value of
q 2 {0.2, 0.3,0.4, 0.5,0.6, 0.7,0.8, 0.9}. The earliness (aj) and tardiness (bj) for all jobs are generated randomly
from the uniform distribution U = [1;5]. Simple Genetic Algorithm: (SGA) First, we solved these test prob-
lems with a simple genetic algorithm. SGA starts with an initial population of randomly generated solutions
(schedules). These solutions are modified by using genetic operators and this process is repeated over a number
of generations. At the termination of SGA, we obtain the best solution (schedule) for the problem.

We have included the dominance properties in the genetic algorithm to obtain better starting solutions.
This hybrid genetic algorithm with dominance properties is GADP. In GADP approach also, we start with
an initial population of randomly generated solutions (schedules). Before using the genetic operators, we first
6

2 9 5 3 4 8 10 6

2 10 5 3 4 8 9

Position 1

7 1

7 1

Before 
mutation

After
mutation

Position 2

Fig. 5. Swap mutation.



Table 1
properties of optimal schedule

Property number Processing times and due dates Condition for Px to be better than Py

1 In Px: di > (A + pi), dj P (A + pi + pj)
pi
ai

P pj

aj

In Py: di > (A + pj), di P (A + pi + pj)

2 In Px: di > (A + pi), dj P (A + pi + pj) di 6 Aþ pi
aiþbiþaj

aiþbi

� �
þ pj

bi
aiþbi

� �n o
In Py: dj > (A + pj), di 6 (A + pi + pj)

3 In Px: di < (A + pi), dj 6 (A + pi + pj)
pi
bi
6

pj

bj

In Py: dj 6 (A + pj), di < (A + pi + pj)

4 In Px: di < (A + pi), dj 6 (A + pi + pj) dj P Aþ pjðajþbj�biÞþbjpi

ðajþbjÞ

n o
In Py: dj P (A + pj), di < (A + pi + pj)

5 In Px: di > (A + pi), dj < (A + pi + pj) (aj + bj) {dj � pj � A} + bipj P (ai + bi) {di � pi � A} + bjpi

In Py: dj > (A + pj), dj 6 (A + pi + pj)

6 In Px: di > (A + pi), dj < (A + pi + pj) di 6 Aþ piðaiþbi�bjÞ
ðaiþbjÞ

n o
In Py: dj > 6 (A + pj), di 6 (A + pi + pj)

7 In Px: di > (A + pi), dj < (A + pi + pj) dj P Aþ pjðajþbjþaiÞþbjpi

ðajþbjÞ

n o
In Py: dj > (A + pj), di > (A + pi + pj)

8 In Px: di > (A + pi), dj < (A + pi + pj) Always Py is better

In Py: dj < (A + pj), di > (A + pi + pj)

9 In Px: di 6 (A + pi), dj > (A + pi + pj) Always Px is better

In Py: dj > (A + pj), di < (A + pi + pj)

588 P.C. Chang et al. / Applied Mathematical Modelling 33 (2009) 579–596
check the dominance properties (using our algorithm) and obtain better starting solutions (schedules). Of
course, the computational times of DP is taken into consideration as listed in Table 2 for reference. Since
all the neighborhood structures of each job have to be evaluated, the time-complexity of DP is O(n2). To gen-
erate k initial solutions, the time-complexity will be k O(n2). After this, the solutions are modified using genetic
operators and this process is repeated over a number of generations. At the termination of GADP, we obtain
the best solution (schedule) for the problem.

We have compared the performance of GADP with SGA on these test problems. The value of all other
parameters in the genetic algorithm such as population size, probability of crossover and mutation, selection
method, and the maximum number of generations are kept the same for both SGA and GADP. These param-
eters are also given in Table 3. In addition, to observe the effectiveness of various approaches, DP, SGA,
Table 2
Average CPU seconds of different algorithms on each instance

Job sets DP SGA GADP

20 0.021073 1.06082 1.05788
30 0.084101 1.67792 1.681973
40 0.284798 2.478637 2.482051
50 0.682626 3.556849 3.513418

Table 3
Parameter values used in SGA and GADP

Crossover operator Two-point crossover
Crossover rate 0.8
Mutation operator Swap mutation
Mutation rate 0.3
Population size 100
Generations 1000
Clone strategy Swap mutation
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GADP are also compared with the optimal solutions by B&B approach as shown in Table 4. All solutions
generated by GADP in these small instances are very close to the optimal solutions. We have used the objec-
tive function value at the termination of SGA and GADP, as the performance measure in our study. For each
Table 4
DP, SGA, and GADP compared with the optimal approach (B&B) for small instances

Instance DP SGA objective value GADP objective value B&B CPU time (Avg)

Min Mean Max Min Mean Max Min Mean Max Opt. CPU time DP SGA GADP

sks222a 5298 5362 5393 5286 5401.7 5643 5286 5291 5298 5286 1.06 0.0095 1.0573 1.0631
sks223a 4546 4546 4546 4442 4511.4 4695 4442 4442 4442 4442 0.53 0.03377 1.063 1.0587
sks224a 3840 3840 3840 3840 3884.3 4144 3840 3840 3840 3840 1.51 0.01297 1.053 1.0594
sks225a 3989 4089.5 4113 3958 4173.5 4389 3958 3958.6 3977 3958 0.58 0.01317 1.059 1.0588
sks226a 3053 3053 3053 3020 3148.1 3481 3020 3020 3020 3020 0.38 0.02803 1.049 1.0645
sks227a 2048 2048 2048 2001 2114.7 2795 2001 2030.8 2048 2001 0.53 0.0106 1.0547 1.0613
sks228a 2111 2193.9 2199 2085 2155.6 2749 2085 2085 2085 2085 4.19 0.016033 1.0504 1.0592
sks232a 4357 4357 4357 4319 4461.7 4801 4319 4320.4 4321 4319 0.94 0.0157 1.0645 1.0615
sks233a 4411 4578.2 4628 4411 4552.5 5120 4411 4411 4411 4411 0.36 0.03693 1.0536 1.0625
sks234a 5076 5076 5076 5060 5184.1 5458 5040 5062.8 5076 5040 1.19 0.0145 1.0719 1.0532
sks235a 3183 3217.1 3219 3118 3211.3 3462 3118 3118 3118 3118 0.66 0.01663 1.064 1.0583
sks236a 2887 2927.8 2932 2806 2977.6 3379 2801 2801.7 2806 2801 2.06 0.01557 1.0739 1.0558
sks237a 1873 1873 1873 1809 1950 2430 1809 1809 1809 1809 0.56 0.015067 1.0605 1.0506
sks238a 1915 1968.3 1972 1872 2004.8 2575 1872 1872 1872 1872 4.2 0.02247 1.0651 1.0541

Table 5
Objective function values in SGA and GADP, for 20, 30, 40, and 50 jobs

Job Instance SGA objective value GADP objective value

Minimum Mean Maximum Minimum Mean Maximum

20 sks272a 6420 6663.3 7556 6420 6445.1 7173
sks273a 8007 8488 9277 8007 8074.7 8358
sks274a 6030 6505.8 6948 6030 6095.4 6357
sks275a 9513 9721 10437 9513 9513 9513
sks276a 3526 3975.6 5014 3526 3612.8 3629
sks277a 6066 7155 8785 6066 6135.1 6584
sks278a 7700 8236.2 9765 7700 7701.3 7738

30 sks372a 20,917 22,860 24,935 20,818 21,066 21,601
sks373a 13,557 14,491 16,558 13,465 13,535 13,723
sks374a 12,171 14,371 18,357 12,171 12,243 12,610
sks375a 13,686 14,503 16,599 13,662 13,825 13,922
sks376a 12,718 13,917 16,381 12,594 12,691 12,834
sks377a 10,300 11,394 13,380 10,206 10,236 10,397
sks378a 14,213 14,812 15,910 13,988 13,996 14,111

40 sks472a 31,841 34,300 40,461 31,426 31,692 32,298
sks473a 31,832 33,742 36,054 31,474 31,675 32,472
sks474a 29,487 31,866 35,967 28,688 28,761 29,031
sks475a 27,433 31,348 37,175 24,904 25,566 27,090
sks476a 22,907 25,399 30,520 21,983 22,136 22,426
sks477a 26,884 29,945 34,366 26,548 26,635 26,803
sks478a 19,111 22,625 31,300 18,387 18,502 18,995

50 sks572a 50,929 54,373 57,042 49,387 49,705 50,384
sks573a 45,007 47,290 50,441 44,664 44,889 45,743
sks574a 42,715 47,354 53,077 40,998 41,371 42,516
sks575a 28,902 32,658 46,119 25,476 25,585 25,878
sks576a 34,389 37,516 41,303 32,565 33,151 33,572
sks577a 30,546 37,738 45,969 28,646 28,891 29,307
sks578a 49,851 54,063 59,652 49,087 49,207 49,335
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value of (n,s,q) the test problems were run 30 times. The average value of the objective function at the termi-
nation of SGA and GADP are obtained. Taking the average of 30 runs give a better picture rather than run-
ning only once and comparing the objective function value. The average value of the objective function in
GADP is always less than the average value of the objective function in SGA. This shows that GADP per-
forms better than SGA. A sample of results comparing the objective function value is given in Table 5. As
expected, in some runs both the SGA and GADP gives the same objective function value. This is shown in
pictorial form in Fig. 6.

A comparison of SGA and GADP with the optimal values of the objective function is shown in Table 6.
The optimal value is obtained by branch and bound technique. In Table 4, we present the minimum, mean and
maximum value of the objective function obtained in 30 runs for both SGA and GADP. This also clearly
shows that GADP performs better than SGA. We have considered the case with 100 and 200 jobs and
observed that the performance of GADP is better than SGA.

We have assumed in our analysis that dj � P for all the jobs, where P ¼
Pn

i¼1pi. When dj P
Pn

i¼1pi for
some jobs, the following approach is used. First consider the jobs for which the due date is more than P. These
jobs will appear at the end of the schedule. So remove these jobs from n. Let the new number of jobs is n1. Find
Table 6
Comparisons of objective function

Job Instance SGA objective value GADP objective value

Minimum Mean Maximum Minimum Mean Maximum

20 sks225a 9838 10,117 11,371 9838 9843.1 9860
sks235a 7116 7352.3 8977 7116 7195.3 7285
sks245a 4686 5064.7 6313 4686 4698.8 4807

30 sks325a 19,693 20,484 22,869 19,654 19,737 20,193
sks335a 19,008 20,085 24,740 19,008 19,023 19,123
sks345a 14,138 16,583 18,904 14,095 14,319 15,184

40 sks425a 22,410 26,040 31,484 22,124 22,230 22,373
sks435a 24,098 27,623 33,686 24,055 24,187 24,351
sks445a 23,222 26,336 36,176 22,551 22,556 22,686

50 sks525a 47,669 50,895 58,513 47,382 47,882 48,475
sks535a 45,486 51,907 67,124 44,319 44,923 45,950
sks545a 20,839 26,824 32,957 20,570 20,604 20,729
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Fig. 6. Performance comparison of SGA and GADP (Instance sks225a of 20 jobs).
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the value of P for these n1 jobs. In these n1 jobs also the due date for some jobs may be greater than the sum of
processing times. Remove these jobs also. Let the new number of jobs be n2. Find the value of P for these n2

jobs. In these n2 jobs if the due date of all the jobs is less than P, then use GADP with n2 jobs and obtain the
schedule. The remaining (n � n2) jobs are arranged in the decreasing order of their processing times at the end
of the schedule. This is also suggested in Sourd et al. [27,28].

5. Conclusions and future researches

Single machine scheduling problem with n jobs, in which each job j (j = 1,2, . . . ,n) has a processing time pj,
a due date dj, earliness penalty aj, and tardiness penalty bj. The objective is to minimize the weighted sum of
earliness and tardiness costs, without considering machine idle times. In this research, a set of dominance
properties of (the conditions on) the optimal schedule based on the processing times, due dates, and the
job dependent penalties are derived. In addition, a hybrid genetic algorithm that uses the dominance proper-
ties (GADP) is presented.

The performance of this hybrid genetic algorithm is compared with simple genetic algorithm (SGA).
Although genetic algorithms are able to solve different kind of combinatorial optimization problems, it is
observed that the convergence of genetic algorithm is slow. One way of improving the convergence in genetic
algorithms is to include the knowledge from problem domain. Dominance Properties are included in
genetic algorithms to improve the convergence. The dominance properties obtain efficient solutions before
the genetic operations are carried out. Once the DP generates good initial solutions efficiently, the genetic
algorithms are able to converge faster. It is true that DP needs additional computational efforts, but helps
GA to converge faster so that GAs requires less number of generations. The only disadvantage is the proofs
of dominance properties for the scheduling problem that is necessary. It is the reason why the numerical
results on test problems are presented to show that this hybrid genetic algorithm (GADP) performs better than
simple genetic algorithm (SGA).

There are some new directions to further improve the hybrid algorithm. The first will be to applied local
search to improve the performance of the hybrid algorithm and the idea is pretty similar to memetic algorithm.
Chromosomes generated after crossover or mutation operators can be further improve by the local search pro-
cedure. The second is apply the same approach for more complicated problems such as single machine sched-
uling with setups, parallel machine or flow shop problems. These are interesting new applications to the
academic researchers or industrial practitioners.

Appendix A

Detailed proving procedures for Properties 4–12 are listed in the following:

Property 4. In schedule Px for two adjacent tardy jobs i (in position k) and j (in position k + 1), and if

dj > (A + pj), than the schedule Px is better than the schedule Py only when dj > ðAþ
pjðajþbj�biÞþbjpi

ðajþbjÞ
Þ.
Conjecture. Now, we discuss a special case when dj = (A + pj). Here in the schedule Px jobs i and j (in position k

and k + 1) are tardy jobs. After interchange, in schedule Py, the job j (in position k) is an on time job, and job i (in

position k + 1) is an tardy job. This means that di < (A + pi), dj = (A + pj),di < (A + pi + pj) and dj < (A + pi + pj).

Here also, job i will come before job j only when pi
bi
6

pj

bj
.

This can be easily proved by considering the fact that dj = (A + pj) in the above analysis.
Note that this property is true only when di < (A + pi), dj > (A + pj), di < (A + pi + pj), and dj < (A +

pi + pj). The region, R4, in which this property is true is shown in Fig. 1. This above conjecture dj = (A + pj)
is a point on the lower boundary of region j, and is also the upper boundary of region R3. Hence, we get the
same property as in Property 3, i.e., pi

bi
6

pj

bj
.

Status 3: Consider two adjacent jobs i (in position k) is an early job, and j (in position k + 1) is a tardy job,
in the schedule Px. This two adjacent jobs are early and tardy means that di > (A + pi) and dj < (A + pi + pj).
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This dj < (A + pi + pj) implies the two possibilities dj > (A + pj) and dj < (A + pj). Also, di > (A + pi) implies
the two possibilities di > (A + pi + pj) and di < (A + pi + pj). Hence, there are four possibilities as given below

� Possibility (i). dj > (A + pj) and di < (A + pi + pj).
� Possibility (ii). dj < (A + pj) and di < (A + pi + pj).
� Possibility (iii). dj > (A + pj) and di > (A + pi + pj).
� Possibility (iv). dj < (A + pj) and di < (A + pi + pj).

Possibility (i). Here, in schedule Px job i (in position k) is an early job and job j (in position k + 1) is a
tardy job. After interchange, in schedule Py job j (in position k) is an early job and job i (in position
k + 1) is a tardy job. This means that di > (A + pi), dj > (A + pj), di < (A + pi + pj) and dj < (A + pi + pj).
The total absolute deviation Z(Px), Z(Py) for schedule Px and Py are
ZðPxÞ ¼ G1 þ G2 þ aiðdi � A� piÞ þ bjðAþ pi þ pj � djÞ;
ZðPyÞ ¼ G1 þ G2 þ ajðdj � A� pjÞ þ biðAþ pj þ pi � diÞ:
We now derive the condition under which Z(Px) 6 Z(Py). For this purpose, we obtain the value of
Z(Py) � Z(Px). Let X = Z(Py) � Z(Px) and is given by
X ¼ ðaj þ bjÞfdj � pj � Ag þ bipj � ðai þ biÞfdi � pi � Ag � bjpi:
From the above expression, we see that X P 0 when the following condition is satisfied:
ðaj þ bjÞfdj � pj � Ag þ bipj � ðai þ biÞfdi � pi � Ag � bjpi:
From the above condition, we see that if X � 0, then the schedule Px is better than the schedule Py; i.e.,
Z(Px) < Z(Py). If X = 0 then Z(Px) = Z(Py). For this case, job j will come before job j only when
(aj + bj){dj � pj � A} + bipj � (ai + bi) {di � pi � A} � bjpi. Based on this analysis, we state the following
property.

Property 5. In schedule Px, for two adjacent jobs i (in position k) an early job, and j (in position k + 1) a tardy

job, and if dj > (A + pj),, di < (A + pi + pj), then schedule Px is better than schedule Py only when (aj + bj)

{dj � pj � A} + bipj � (ai + bi){di � pi � A} � bjpi.

Note that this property is true only when di > (A + pi), dj > (A + pj), di < (A + pi+ pj) and dj < (A + pi + pj).
Region R5, in which this property is true, is shown in Fig. 1.

Possibility (ii). Here, in schedule Px job i (in position k) is an early job and job j (in position k + 1) is a
tardy job. After interchange, in schedule Py both the jobs j (in position k) and i (in position k + 1) are tardy
job. This means that j and dj < (A + pi + pj). The total absolute deviation Z(Px), Z(Py) for schedule Px and
Py are
ZðPxÞ ¼ G1 þ G2 þ aiðdi � A� piÞ þ bjðAþ pi þ pj � djÞ;
ZðPyÞ ¼ G1 þ G2 þ bjðAþ pj � djÞ þ biðAþ pj þ pi � diÞ:
We now derive the condition under which Z(Px) 6 Z(Py). For this purpose, we obtain the value of
Z(Py) � Z(Px). Let X = Z(Py)�Z(Px) and is given by
X ¼ �bjpi � bipi � aidi þ bipj þ ðai þ biÞðAþ piÞ:
From the above expression, we see that X P 0 when the following condition is satisfied:
di 6 Aþ
piðai þ bi � bjÞ
ðai þ bjÞ

( )
:

From the above condition, we see that if X > 0, then schedule Px is better than schedule Py; i.e.,
Z(Px) < Z(Py). If X = 0 then Z(Px) = Z(Py). For this case, job i will come before job j only when

di 6 fAþ
piðaiþbi�bjÞ
ðaiþbjÞ

g. Based on this analysis, we state the following property.
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Property 6. In schedule Px, for two adjacent jobs i (in position k) an early job, and j (in position k + 1) a tardy

job, and if dj < (A + pj) and di < (A + pi + pj), then schedule Px is better than schedule Z(Py) only when

di 6 fAþ
piðaiþbi�bjÞ
ðaiþbjÞ g.

Conjecture. Now, we discuss a special case when dj = (A + pj). Here in the schedule Px jobs i (in position k) is an

early job and job j (in position k + 1) is a tardy job. After interchange, in schedule Py, the job j (in position k) is an
on time job, and job i (in position k + 1) is an tardy job. This means that di > (A + pi), dj < (A + pj), di < (A +

pi + pj) and dj < (A + p i + pj). Here also, job i will come before job j only when di 6 fAþ
piðaiþbi�bjÞ
ðaiþbjÞ

g. This can

be easily proved by considering the fact that dj=(A + pj) in the above analysis. Note that we get the same result

when dj = (A + pj) in Property 5 also.

Note that this property is true only when di > (A + pi), dj < (A + pj), di < (A + pi + pj) and dj < (A +
pi + pj). Region R6, in which this property is true is shown in Fig. 1. This above conjecture dj = (A + pj) is
a point on the upper boundary of region R6 and is the lower boundary of region R5. Hence, we get the same
result as in Property 5 also.

Possibility (iii). Here, in the schedule Px jobs i (in position k) is an early job and job j (in position k + 1) is a
tardy job. After interchange, in schedule Py both jobs j (in position k) and i (in position k + 1) are early jobs.
This means that di > (A + pi), dj < (A + pj), di < (A + pi + pj) and dj < (A + pi + pj). The total absolute devia-
tion Z(Px), Z(Py) for schedules Px, Py are
ZðPxÞ ¼ G1 þ G2 þ aiðdi � A� piÞ þ bjðAþ pi þ pj � djÞ;
ZðPyÞ ¼ G1 þ G2 þ ajðdj � A� pjÞ þ aiðdi � A� pj � piÞ:
We now derive the condition under which Z(Px) 6 Z(Py). For this purpose, we obtain the value of
Z(Py) � Z(Px). Let X = Z(Py) � Z(Px) and is given by
X ¼ ðaj þ bjÞðdj � AÞ � pjðaj þ bj þ aiÞ � bjpi:
From the above expression, we see that X P 0 when the following condition is satisfied:
dj P Aþ
pjðaj þ bj þ aiÞ þ bjpi

ðaj þ bjÞ

( )
:

From the above condition, we see that if X P 0, then schedule Px is better than schedule Py; i.e.,
Z(Px) < Z(Py). If X = 0 then Z(Px) = Z(Py). For this case, job i will come before job j only when

dj P fAþ pjðajþbjþaiÞþbjpi

ðajþbjÞ
g. Base on this analysis, we state the following property.

Property 7. In schedule Px, for two adjacent jobs i (in position k) an early job, and j (in position k + 1) a tardy

job, and if dj > (A + pj) and di > (A + pi + pj), then schedule Px is better than Py only when

dj P fAþ pjðajþbjþaiÞþbjpi

ðajþbjÞ
g.

Conjecture. Now, we discuss a special case when di = (A + pi + pj). Here in the schedule Px jobs i (in position k)
is an early job and job j (in position k + 1) is a tardy job, After interchange, in the schedule Py, the job j (in posi-

tion k) is a tardy job, and job i (in position k + 1) is an on time job. This means that di > (A + pi), dj > (A + pj),

di=(A + pi + pj) and dj < (A + pi + pj). Here also, job i will come before job j only when dj P fAþ pjðajþbjþaiÞþbjpi

ðajþbjÞ
g.

Note that we get the same result when di = (A + pi + pj) in Property 5 also.

Note that this property is true only when di > (A + pi), dj > (A + pj), di = (A + pi + pj) and dj < (A +
pi + pj). Region R7, in which this property is true is shown in Fig. 1. This above conjecture di = (A + pi + pj)
is a point on the left boundary of region R7 and is also the right boundary of region R5. Hence, we get the same
result from Property 5 also.

Possibility (iv). Here, in schedule Px job i (in position k) is an early job and job j (in position k + 1) is a
tardy job. After interchange, in schedule Py job j (in position k) is a tardy job, and job i (in position k + 1) is
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an early jobs. This means that di > (A + pi), dj < (A + pj), di > (A + pi + pj) and dj < (A + pi + pj). The total
absolute deviation Z(Px), Z(Py) for schedules Px, Py are
ZðPxÞ ¼ G1 þ G2 þ aiðdi � A� piÞ þ bjðAþ pi þ pj � djÞ;
ZðPyÞ ¼ G1 þ G2 þ bjðAþ pj � djÞ þ biðdi � A� pj � piÞ:
We now derive the condition under which Z(Px) 6 Z(Py). For this purpose, we obtain the value of
Z(Py) � Z(Px). Let X = Z(Py) � Z(Px) and is given by
X ¼ �pibj � pjai:
From the above expression, we see that X = �pibj � pjai, which implies that schedule Py is always better
than schedule Px. Based on this analysis, we state the following property.

Property 8. In schedule Px, for two adjacent jobs i (in position k) an early job, and j (in position k + 1) a tardy
job, and if dj < (A + pj) and di > (A + pi + pj), then schedule Py is always a better schedule than schedule Px.

Note that this property is true only when di > (A + pi), dj < (A + pj), di > (A + pi + pj) and dj < (A +
pi + pj). Region R8, in which this property is true, is shown in Fig. 1.

Status 4: Here, in Px job i (in position k) is a tardy job and job j (in position k + 1) is an early job. After
interchange, in Py the job j (in position k) is an early job, and job i (in position k + 1) is a tardy job. This
means that di < (A + pi), dj > (A + pj), di < (A + pi + pj) and dj > (A + pi + pj). The total absolute deviation
Z(Px), Z(Py) for schedules Px, Py are
ZðPxÞ ¼ G1 þ G2 þ biðAþ pi � diÞ þ ajðdj � A� pi � pjÞ;
ZðPyÞ ¼ G1 þ G2 þ ajðdj � A� pjÞ þ biðAþ pj þ pi � diÞ:
We now derive the condition under which Z(Px)6Z(Py). For this purpose, we obtain the value of
Z(Py)�Z(Px). Let X = Z(Py) � Z(Px) and is given by
X ¼ piaj � pjbi:
From the above expression, we see that X = piaj � pjbi, which implies that schedule Px is always better than
schedule Py. Based on this analysis, we state the following property.

Property 9. In schedule Px, for two adjacent jobs i (in position k) a tardy job, and j (in position k + 1) an early

job, then schedule Px is always better than schedule Py.

Note that this property is true only when di < (A + pi), dj > (A + pj), di < (A + pi + pj) and dj > (A +
pi + pj). Region R9, in which this property is true, is shown in Fig. 1.

Now, we consider the job Status from 5 to 8. In these statuses, one of these two jobs is an on-time job. The
on time jobs are special cases of the status 1–4. The on-time job represents a line in Fig. 1. Now, we consider
on-time jobs.

Status 5: Consider two adjacent jobs i (in position k) an early job, and j (in position k + 1) is an on time job,
in schedule Px. This means that di > (A + pi) and dj = (A + pi + pj). This dj = (A + pi + pj) implies that
dj > (A + pj). Hence, there are two possibilities on di as given below.

� Possibility (i). di > (A + pi + pj).
� Possibility (ii). di < (A + pi + pj).

Probability (i). Here in the schedule Px job (in position k) is an early job, and j (in position k + 1) is an on
time job. After interchange, in the schedule Py, the jobs j and i (in position k and k + 1) are also early jobs. We
can easily see that this Status 5 is a special case of Status.1, where dj = (A + pi + pj). Hence, we obtain the
same property as in Property 1, for this possibility also.

Property 10. In schedule Px, for two adjacent jobs i (in position k) an early job and j (in position k + 1) an on-

time job, and if di > (A + pi + pj), then schedule Px is better than schedule Py only when
pi
ai

P pj

aj
.
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Note that this property is true only when di > (A + pi), dj > (A + pj), di = (A + pi + pj), and dj = (A +
pi + pj). In Fig. 1, it is a point on the boundary between region R1 and region R7.

Possibility (ii). Here in the schedule Px job i (in position k) is an early job, and job j (in position k + 1) is an
on-time job. After interchange, in schedule Py, job j (in position k) is an early job and job i (in position k + 1)
is a tardy job. Here also, we see that this possibility is a special case of Status.1, where dj = (A + pi + pj).
Hence, we obtain the same property as in Property 2, for this possibility also.

Property 11. In schedule Px, for two adjacent jobs i (in position k) an early job, and j (in position k + 1) is an on

time job, and if di < (A + pi + pj), then the schedule Px is better than the schedule Py only when

di 6 fAþ pið
aiþbiþaj

aiþbi
Þ þ pjð

bi
aiþbi
Þg. Note that this property is true only when di > (A + pi), dj > (A + pj),

di < (A + pi + pj), and dj=(A + pi + pj). In Fig. 1, this is a point on the boundary between regions R2 and R5.

Status 6: Here, in Px job i (in position k) is an on time job and job j (in position k + 1) is an early job. After
interchange, in Py the job j (in position k) is an early job, and job i (in position k + 1) is a tardy. This means
that di = (A + pi), dj > (A + pj), di < (A + pi + pj), and dj > (A + pi + pj). We see that this Status 6, is a special
case of Status 4, where di = (A + pi). Hence, we obtain the same Property 9, for this Status 6 also.

Property 12. In schedule Px, for two adjacent jobs i (in position k) an on-time job, and j (in position k + 1) an

early job, then schedule Px is always better schedule Py.

Note that this property is true only when di = (A + pi), dj > (A + pj), di < (A + pi + pj), and dj > (A +
pi + pj). In Fig. 1, it is a point on the boundary between regions R2 and R9.

Statuses 7 and 8: These two status 7 and 8 are also special cases of Status 2, with dj = (A + pi + pj), and
di = (A + pi). These special cases represent a point on the line between two regions. T can be easily seen that
these special cases are points on the boundary between regions R3 and R6, R4 and R9.

Status 9: Now, we discuss a special case when di = (A + pi), and dj = (A + pi + pj). Here in the schedule Px

jobs (in position k) is an on time job and j (in position k + 1) is also an on time job. The total absolute devi-
ation for the schedule Z(Px) is zero. Hence, this schedule Px is always better. This is point in Fig. 1.

The summary of the properties of early and tardy jobs are given in Table 1. In this Table 1, the status of job
i, and j in schedule Px, and the interchanged schedule Py are given in terms of pi, pj, A, di, and dj. In Fig. 1, we
see that all the Statuses 1–4 are represented as regions R1 to R9. The special cases (on time jobs) are lines in this
Fig. 1. The on time jobs are included in Properties 1–9. Also, in Fig. 1, for each the property (condition) sche-
dule Px has to satisfy is given.

If the property is satisfied, then schedule Px is better than the schedule Py. If the property is not satisfied,
then schedule Py is better than schedule Px.
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