
Abstract—Many multiobjective evolutionary algorithms
are based Pareto domination, among them NSGA II and
SPEA 2 are two very popular ones. MOEA/D is a very
recent multiobjective evolutionary algorithm using
decomposition. In this paper, we implement MOEA/D for
multi-objective flowshop scheduling problems.  We study
the replacement strategy of neighboring solutions, the
determination of the reference point, and compare
different decomposition methods. Experimental results
demonstrate that MOEA/D outperforms NSGA II and
SPEA 2 significantly for the 2-objective and 3-objective
benchmark flowshop-scheduling instances.

I. INTRODUCTION

he multiobjective optimization problem (MOP) can be
stated as follows:

Minimize T
m xfxfxF ))(,),(()( 1

 Subject to x    (1) 

In many real-life applications, no single solution can optimize
all the objectives at the same time. Pareto optimal solutions,
which characterizes the best trade-offs among the objectives,
are of practical interest to a decision maker. Very often, there
are many or even infinite Pareto optimal solutions. The set of
all the optimal Pareto solutions in the objective space is called
the Pareto front (PF). Multiobjective evolutionary algorithms
(MOEA) attempt to find a good approximation to the PF.

Most MOEAs are based on Pareto domination to measure
the qualities of the solutions generated during the search for
selection, which are to find a manageable number of Pareto
optimal vectors which are evenly distributed along the PF,
and thus good representatives of the entire PF [2]. Among
them NSGA-II [3] and SPEA2 [4] are very popular ones. It is 
well-known that under mild conditions, a Pareto optimal
solution could be an optimal solution of a scalar optimization
problem in which the objective is an aggregation of all
the if ’s. This is a basic strategy behind many traditional

mathematical programming methods for approximating the
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PF. A small number of MOEAs adopt this strategy [5-10].
MOEA/D [9-10] is a very recent one. MOEA/D has been
successfully applied for continuous MOPs and knapsack
problems.

In this paper, we propose an implementation of MOEA/D
for multi-objective flowshop problems. We discuss the
choice of decomposition methods in MOEA/D, the setting of
reference point and the way of updating neighboring
solutions. The MOEA/D is experimentally compared with 
NSGA-II and SPEA2 on multiobjective flowshop problems.

The rest of the paper is organized as follows. Section 2
introduces the decomposition methods used in this research.
Section 3 presents the general framework of MOEA/D. 
Several issues on MOEA/D are discussed in Section 4.  The
experimental results are presented in Section 5. Finally, the
conclusion is drawn in Section 6.

II. DECOMPOSITION OF MULTIOBJECTIVE
OPTIMIZATION

There are several approaches for converting the problem of
approximation of the PF into a number of scalar optimization
problems and they can be found in the literature (e.g., [1]).
The most popular ones among them include the weighted sum
approach and Tchebycheff approach which are introduced in 
the following:

A. Weighted Sum Approach [1]

This approach considers a convex combination of the

different objectives. Let T
m ),,,( 21 be a weight

vector, i.e., 0i for all mi ,,1 and 1
1

m

i
i . Then, the 

optimal solution to the following scalar optimization
problem:

Minimize i

m

i
i

ws fxg
1

)|(

Subject to x (2)

is a Pareto optimal point to (1), where we use )|(xg ws  to 

emphasize that is a coefficient vector in this objective
function, while x is the variables to be optimized. To
generate a set of different Pareto optimal vectors, one can use
different weight vectors x in the above scalar optimization
problem. If PF is convex, this approach would work well.
However, not every Pareto optimal vector can be obtained by
this approach in the case of nonconvex PFs [1]. To overcome
these shortcomings, Tchebysheff approach is suggested.
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B. Tchebycheff Approach [1]

In this approach, the scalar optimization problem is in the 
form

Minimize |))(|(max),|( *

1

*
iii

mi

te zxfzxg

Subject to x  (3) 

where T
mzzz ),,( **

1
* is the reference point, i.e., 

)|)((min
1

* xxfz i
mi

for each .,,1 mi  For each

*x Pareto optimal point there exists a weight vector such

that *x is the optimal solution of (3) and each optimal
solution of (3) is a Pareto optimal solution of (1). Therefore,
one is able to obtain different Pareto optimal solutions by
altering the weight vector. One weakness with this approach
is that its aggregation function is not smooth for a continuous
MOP. However, since this work aims to solve scheduling
problems which is a type of discrete problem, it still can be
used in the EA framework in this paper.

III. INTRODUCTION OF MOEA/D

Multiobjective evolutionary algorithm based on
decomposition (MOEA/D) needs to decompose the MOP
under consideration. Any decomposition approaches can
serve this purpose. In the following description, we suppose
that the Tchebycheff approach is employed. It is very trivial
to modify the following MOEA/D when other decomposition
methods are used.

Let n,,, 21 be a set of even spread weight vectors

and *z be the reference point. As shown in Section I, the
problem of approximation of the PF of (1) can be
decomposed into scalar optimization subproblems by using
the Tchebycheff approach and the objective function of the
subproblem is

Minimize |})(|{max),|( *

1

*
ii

j
i

mi

jte zxfzxg (4)

where Tnj ),,,( 21 . MOEA/D minimizes all

these objective functions simultaneously in a single run.

Note that teg  is continuous of ),|( *zxg ite , the optimal

solution of ),|( *zxg jte should be close to that of if i  and
j are close to each other. Therefore, any information about

these teg ’s with weight vectors close to should be helpful for

optimizing ),|( *zxg ite . This is a major motivation behind

MOEA/D.

In MOEA/D, a neighborhood of weight vector i  is 
defined as a set of its several closest weight vectors in

},,,{ 21 n .

The neighborhood of the ith subproblem consists of all the
subproblems with the weight vectors from the neighborhood

of i .The population is composed of the best solution found
so far for each subproblem. Only the current solutions to its 

neighboring subproblems are exploited for optimizing a
subproblem in MOEA/D.

At each generation, MOEA/D with the Tchebycheff
approach maintains:

1. A population of n points nxx ,,1 , where ix is the 
current solution of the ith subproblem.

2. ,FV,,1 nFV  where iFV is the F-value of ix , i.e.,

)( ii xFFV  for each ;,,1 ni

3. ,),,( 1
T

nzzz  where iz is the best value found so

far for objective if ;

4. An external population (EP), which is used to store
nondominated solutions found during the search.

Consequently, the general framework of MOEA/D can be
stated as follows:
Input:
• MOP (1);
• a stopping criterion;
• n: the number of the subproblems considered in MOEA/D;

• A uniform spread of weight vectors: n,,, 21 ;
• T: the number of the weight vectors in the neighborhood of
each weight vector.
Output: EP. 
Step 1) Initialization:

Step 1.1) Set EP .
Step 1.2) Compute the Euclidean distances between any
two weight vectors and then work out the T closest weight
vectors to each weight vector. For each ;,,1 ni set

},,{B(i) 1 T , where Tii ,,1 are the closest

weight vectors to i .

Step 1.3) Generate an initial population nxx ,,1

randomly or by a problem-specific method.

Set )( ii xFFV .

Step 1.4) Evaluate T
nzzz ),,( 1 by a problem-specific

method.
Step 2) Update:

For ni ,,1 , do 

Step 2.1) Reproduction: Randomly select two indexes k, l

from B(i), and then generate a new solution y from kx  and
lx  by using genetic operators.

Step 2.2) Improvement: Apply a problem-specific

repair/improvement heuristic on y  to produce 'y .

Step 2.3) Update of z: For each ,,,1 mj  if 

)( 'yfz jj , then set )( 'yfz jj

Step 2.4) Update of Neighboring Solutions: For each 

index )(iBj , if ),|(),|'( zxgzyg jjtejte , then set
'yx j and )'(yfFV j

j .

Step 2.5) Update of EP:

Remove from EP all the vectors dominated by )( 'yF .

Add )( 'yF to EP if no vectors in EP dominate )( 'yF .
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Step 3) Stopping Criteria: If stopping criteria is satisfied,
then stop and output EP. Otherwise, go to Step 2.
In initialization, B(i) contains the indexes of the T closest

vectors of i . We use the Euclidean distance to measure the

closeness between any two weight vectors. Therefore, i ’s
closest vector is itself, and then )(iBi . If )(iBj , the

subproblem can be regarded as a neighbor of the ith
subproblem.

In the ith pass of the loop in Step 2, the T neighboring

subproblems of the ith subproblem are considered. Since kx

and lx in Step 2.1 are the current best solutions to neighbors
of the ith subproblem, their offspring y should hopefully be a

good solution to the ith subproblem. In Step 2.2, a 
problem-specific heuristic is used to repair/improve y in the

case when y invalidates any constraints, and/or optimize the

ith teg . Therefore, the resultant solution 'y is feasible and

very likely to have a lower function value for the neighbors of
ith subproblem. Step 2.4 considers all the neighbors of the ith

subproblem, it replaces jx with 'y if 'y performs better than
jx with regard to the jth subproblem. jFV is needed in

computing the value of ),|( zxg jjte in Step 2.4.

Since it is often very time-consuming to find the exact
reference point *z , we use z , which is initialized in Step 1.4
by a problem-specific method and updated in Step 2.3, as a 

substitute *z  for teg in Step 2.4. The external population

EP, initialized in Step 1.1, is updated by the new generated

solution 'y in Step 2.5. In the case when the goal in (1) is to

minimize )(xF , the inequality in Step 2.3 should be reversed.

IV. THE FLOWSHOP PROBLEM AND IMPLEMENTATION OF 

MOEA/D

We introduce the MOEA/D algorithm for dealing with the
flowshp problem.

A. Problem Statement

Flowshops are useful tools in modeling manufacturing
processes. A permutation fowshop is a job processing facility,
which consists of several machines and several jobs to be
processed on the machines. In a permutation fowshop all jobs
follow the same machine or processing order. Our objectives
are to find a set of compromise solutions so that the makespan
and maximum tardiness are minimized.

The flowshop scheduling problem is a typical assembly
line problem where m different jobs have to be processed on n
different machines. All jobs are processed on all the machines
in the same order. The processing times of the jobs on
machines are fixed irrespective of the order in which the
processing is done. The problem is characterized by a matrix
P = ( , )p i j , i  = 1… m, j  = 1… n, of processing times. Each

machine processes exactly one job at a time and each job is 
processed on exactly one machine at a time. The problem then

is to find a sequence of jobs such that the makespan that is the
completion time of the last job in the sequence on the last

machine is minimized. If iC denotes the completion time for

job i , then we are trying to minimize max iC . There are 

many other criterions that can be considered for optimization.
We refer the reader to Bagchi [11] for a detailed discussion of
multi-objective scheduling using GA. For details of the
flowshop and other scheduling and sequencing problems we
refer the reader to Baker [12].

The flow shop scheduling can be formerly defined as
follows: if ( , )p i j is the processing times for job i  on

machine j , and a job permutation 1 2{ , ,..., }n , where

there are n jobs and m machines, then the completion times
( , )iC j  is calculated as follows:

1 1( ,1) ( ,1)C p

1( ,1) ( ,1) ( ,1)i iiC C p  for 2,...,i n

1 1 1( ,1) ( , 1) ( , )C C j p j for 2,...,j m
(6)

1( , ) max{ ( , ), ( , 1)} ( , )i i iiC j C j C j p j  for

2,...,i n ; 2,...,j m
The makespan is finally defined as

max ( ) ( , ).nC C m                   (7)

Then, the permutation flowshop scheduling problem (PFSP)

is to find a permutation * in the set of all permutations
scuh that

*
max max( ) ( ) .C C    (8)

A more general flowshop scheduling problem can be
defined by allowing the permutation of jobs to be different on
each machine. However, what work has been done to show
on the more general flow shop scheduling problem has tended
to small improvement in solution quality over the PFSP while
increasing the complexity of the problem substantially. The

size of the solution space increases from !n  to ( !)mn .Other

objective functions for the PFSP also received a lot of
attention. For example, the mean flow-time (the time a job
spends in process), or the mean tardiness (assuming some
deadline for each job) are to be minimized. Other real
problems from the manufacturing industries such as jobs may
have non-identical release dates, there may be 
sequence-dependent setup times, and there may be limited
buffer storage between machines and so on. These characters
of the real problem will make the problem more complicated
to be solved within a reasonable time frame. However, GA 
approaches provide a more realistic view to the problem.
Since it can generate alternatives of sequences (in the 
evolving process each chromosome representing a feasible
solution to the problem) to the decision maker, a more
applicable sequence can be decided to solve the current
problem with satisfactory results.
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B. Implementation of MOEA/D for flowshop problem

To further improve the performance of MOEA/D, some
procedures of MOEA/D are modified. First of all, it is
arguable that which decomposition method can be used in the
MOEA/D. Miettinen [1] aruged that the weighted-sum
approach is good at convex problem while Tchebysheff
approach is useful when the problem is non-convex. As a
result, although our previous work showed that Tchebysheff
approach outperformed the weighted sum approach, it is still
not sufficient enough to conclude that Tchebysheff approach
will perform better for the flowshop benchmarks. The
validation of the effect of these two decomposition methods
will be provided at section V. 

Secondly, the z index is applied as a substitute of *z .
Hence, the value of z is apparently larger than or equal to
that of *z in the minimization problem and z  doesn’t
guarantee a good lower reference value when the
decomposition method normalizes the objective values. To
provide a good approximation of the z , a parameter  is 
introduced and each iz is multiplied by  if iz  is improved.

The setting of is configured by Design-of-Experiment and
the result is also shown in section V. 

Finally, once a good solution is found in the MOEA/D, the
algorithm will replace its neighborhood solutions
immediately. When the solution is very good, this new 
solution inevitably replaces all neighborhood solutions. This
procedure enhances the convergence of the algorithm;
however, it causes the problem of degrading the diversity of
the population abruptly. Therefore, the genetic operators are
not able to generate different offsprings since all the solutions
are identical in the T neighbors. Therefore, this paper sets the
maximum number of replaced neighborhood solution is 1 
rather than be able to replace all neighbors. Because this
setting is problem specific, we examine this issue carefully at 
section V.A. 

There are many crossover and mutation methods. We
utilize the two-point crossover and moving position mutation
for the Crossover procedure and the Mutation procedure,
respectively, because Muruta and Ishibuchi [21] found both
of them were the better approaches for these two objectives.

It is noted that there is no improvement or repair procedure
applied in this multiobjective scheduling study. Finally, to
evaluate the performance of the proposed algorithm, Inverted
General Distance (IGD) is applied in our experimental studies.
Let P* be a set of uniform distributed points in the objective
space along the PF. Let P be an approximation to the PF, the
inverted generational distance from P* to P is defined as: 

*

),(
)*,( *

P

Pvd
PPIGD Pv   (9)

Where ),( Pvd is the minimum Euclidean distance

between v and the points in P. If *P is large enough to

represent the PF very well, P)D(P*, could measure both the

diversity and convergence of P in  a sense. To have a low 
value of P)D(P*, , P must be very close to the PF and can not

miss any part of the whole PF. Consequently, the smaller
IGD value, the better performance of the algorithm.

V. EXPERIMENTAL RESULTS

This paper compares the performance of MOEA/D with
NSGA II and SPEA 2 on the 2-objective and 3-objective
flowshop scheduling problems [7]1, whose objectives include
makespan, maximum tardiness, and an extra objective
average flowtime. Furthermore, there are 20, 40, 60, and 80
jobs on 20 machines in these instances. The stopping criterion
is to examine 100,000 solutions in each replication and the 
experiments are replicated 20 times. In addition,
Design-of-Experiment (DOE) is employed to select the
parameters of each algorithm. Table 1 and Table 2 show the
common parameter setting of the three algorithms and the
parameter configurations of MOEA/D respectively.

TABLE 1
THE COMMON PARAMETERS OF THE THREE ALGORITHMS

Type Factor MOEA/D NSGA II SPEA 2
PopSize 200 200 200

Pc 1.0 1.0 1.0
2-obj

Pm 1.0 1.0 1.0
PopSize 300 200 200

Pc 0.5 0.5 0.5
3-obj

Pm 0.5 1.0 1.0

TABLE 2
PARAMETER CONFIGURATIONS OF MOEA/D

Type Factor MOEA/D
Decomposition Weighted Sum

0.62-obj
Neighbors 10

Decomposition Tchebysheff
0.83-obj

Neighbors 10

It is noticeable that the decomposition method of MOEA/D
applies the weighted sum approach in 2-objective problem
while the Tchebysheff method is applied in 3-objective
problems. The reason is the shape of Pareto front which
causes this difference; the Pareto front of the 2-objective
problem is a convex problem and the 3-objective problem is a 
non-convex one (Stated in section 2.). Consequently, the 
Tchebysheff method outperforms the weighted sum method
significantly in our DOE experiment.

For the setting of , it implies no matter the weighted sum
method or the Tchebysheff method, MOEA/D works better
when the reference point is decreased. It means after we 
decrease the values of the reference point, it provides a good
approximation of true ideal point. Consequently, decreasing
the reference point might be useful for the class of
decomposition methods.

Finally, because the number of replaced neighborhood
solution in step 2.4 is set to one, which may influence the 
diversity and convergence effect, this issue is further

1 Test instances:
http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e/research/pdf_file/multiobjec
tive/MOGLS/test_problem.html
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discussed in the section A. Finally, the comparison results of
the three algorithms are given in section B.

A. DOE Experiments of MOEA/D

Once a new solution is found in the modified MOEA/D,
there is at most one neighborhood solution updated. It
prevents from the new solution replaces all its neighbor
solutions. However, it is still vague of how many number of
replaced solution(s) is required. This section demonstrates the
effect of the number of replaced solutions under through the
instances in this paper. Therefore, we compare the MOEA/D
with the number of replacement is from zero (no replacement)
to all neighbor solutions (the original version of MOEA/D).
Modified MOEA/D employs the DOE results and then we ran
the experiments to validate the effect of the number of
replaced solutions. The following figures show the result of
the number of replaced solutions versus its IGD value under
the 8 instances. (2/20 means it is the 2-objective problem and
the number of jobs is 20; similarly, the 3/40 is the 3-objective
problem while there are 40 jobs in the instances.)

Fig 1. The number of replaced neighbor solutions vs. average IGD in the
2-objective problems (Each combination is also replicated 20 times.)

Fig 2. The number of replaced neighbor solutions vs. average IGD in the
3-objective problems (Each combination is also replicated 20 times.)

It is observed that when the problem size is smaller (e.g. 20
or 40 job), it needs less number of replaced solutions (say one
replaced solution is sufficient and more robust.). On the other
hand, when the problem is more complex (such as job 80),
MOEA/D tends to replace more neighborhood solutions.
Consequently, the implication of the number of replaced
neighbor solution is that the larger problem instance requires
more convergence efforts; while the diversity of Pareto
solutions is more important for the smaller size of instances
since each algorithm is able to generate solutions closed to
Pareto front well. According to this experiment result, the 
suggested number of replaced solutions for two objectives
flowshop problem are 0, 4, 2, and 4 and 1, 1, 6, and 10 for
three objectives problems.

B. Comparison of MOEA/D with NSGA II and SPEA 2 

After DOE experiments are done and the properties of
MOEA/D are well discussed, we compared the MOEA/D
with NSGA II and SPEA 2 which are the well-known
multi-objective algorithms. NSGA II and SPEA 2 algorithms
are coded based on the platform PISA2. Table 3 demonstrates
the experiment results of the three algorithms in the eight
flowshop instances evaluated by IGD metric.

TABLE 3
EXPERIMENTAL RESULTS OF THE THREE ALGORITHMS ON THE EIGHT

INSTANCES (IGD). THE LOWEST AVERAGE IGD VALUE IS MARKED IN BOLD.

MOEA/D NSGAII SPEA2

Problem Min Avg. Max Min Avg. Max Min Avg. Max

2/20
28.25 42.3 82 28.25

40.2
3

81.7
4

19.0
2

37.5
4

84.0
8

2/40
106.42 135.2 156.26

106.4
2

144.
6

198
106.

8
139.

7
194.

3
2/60

214.33 267.7 415.25
214.3

3
325.

7
464

214.
3

292.
4

430.
7

2/80
182.16 249.5 326.4

182.1
6

424.
9

682.
7

282.
2

398.
4

598.
9

3/20
80.26 122 168.47 83.18

117.
3

161.
6

56.4
3

116
171.

9
3/40

414.22 604.0 795.36 424.6
771.

8
1384

380.
3

581.
2

738

3/60 1208.2
9

1670.
8

2119.8
9

1539 2354 3275
918.

4
1902 2571

3/80 2192.1
3

3106.
6

4624.5
8

3451 4408 5635 2837 3740 5191

From the experimental results, though SPEA 2 performs
well in some small instances (say 20 jobs for 2 and
3-objective problem and 40 job in 2-objective problem),
MOEA/D is only worse than SPEA2 for 4.5%. However,
when it goes to problems with other size, MOEA/D
outperforms the SPEA2 for 19.2%. In the general case, 
MOEA/D performs better than NSGAII and SPEA2, which
are 38.5% and 16.3%, respectively.

The following ANOVA table shows there is significant
difference among the three algorithms. Consequently,
Duncan pair-wise comparison (table 5) is used to test the
difference between each of them. From the Duncan analysis,
MOEA/D is the best, SPEA 2 is the second one and the

2 http://www.tik.ee.ethz.ch/sop/pisa/

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1437

Authorized licensed use limited to: Yuan Tze University. Downloaded on October 9, 2008 at 09:29 from IEEE Xplore.  Restrictions apply.



NSGA II is the worst. (Because these algorithms don’t share
the same alphabet that means they are not in the same group,
they are significant to each other and MOEA/D is better than
others significantly.) Thus, MOEA/D is indeed better than
Pareto based algorithms. Finally, the following two figures
are the selected Pareto plots of 20-job and 80-job instances in
2-objective and 3-obejective problems.

TABLE 4
ANOVA RESULTS OF THE THREE ALGORITHMS

Source DF Seq SS Adj SS Adj MS F P
ObjType 1 2.4E+08 2.4E+08 2.4E+08 3091.52 0

Algorithm 2 7189331 7189331 3594665 46.17 0
size 3 2.8E+08 2.8E+08 9.3E+07 1189.27 0

ObjType
*Algorithm

2 4689637 4689637 2344819 30.12 0

ObjType*size 3 2E+08 2E+08 6.6E+07 846.03 0
Algorithm*size 6 6796419 6796419 1132736 14.55 0

ObjType
*Algorithm*size

6 3923777 3923777 653963 8.4 0

Error 456 3.6E+07 3.6E+07 77860

Total 479 7.7E+08

TABLE 5
DUNCAN POST-HOC ANALYSIS OF THE ANOVA TEST

Duncan Grouping Mean N Method

 A 975.2 160 NSGAII

 B 736.2 160 SPEA2

 C 688.6 160 MOEA/D

Fig 3. The 2-objective problems with 20 and 80 jobs

Fig 4. The 3-objective problems with 20 and 80 jobs

VI. CONCLUSIONS

Even though there are several multi-objective algorithms
which work well, most of them are Pareto based algorithms
while the decomposition algorithms remain little. MOEA/D is 
one of the decomposition algorithms, which is able to apply
some decomposition methods to solve different types of
problems. This paper discussed the properties of MOEA/D in
the multi-objective flowshop scheduling problems.
According to the experimental results, the decomposition

methods using weighted-sum approach and Tchebysheff
approach are good for the 2-objective and 3-objective
problem because the previous one is convex and the latter one
is non-convex. Consequently, an appropriate decomposition
method is selected only if the problem type (convex or
non-convex) is studied in advance. Moreover, no matter for 
the weighted-sum or the Tchebysheff approach is used in
MOEA/D, it is beneficial for obtaining better solution quality
when the reference point should be decreased. Moreover, the 
requirement of the number of replaced neighbors may
influence the solution quality. The results shown for smaller
problem, MOEA/D needs less replaced neighborhood
solutions. While solving the larger problem instances,
MOEA/D attends to apply more replaced neighborhood
solutions. The reason is that if the problem size is small, the 
diversity is more important so that fewer numbers of replaced
neighbors is employed. On the other hand, the more replaced
neighbor solutions are suggested for the larger size problems.
Finally, MOEA/D outperforms NSGAII and SPEA2 in
2-objective and 3-objective flowshop scheduling instances.
Consequently, decomposition algorithm provides a new
direction to be explored for the researchers interested in 
tackling the multi-objective problems.
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