
 1

Department of Industrial Engineering and Management,

Yuan-Ze University, Taiwan, R.O.C.

The Production Scheduling and Soft-Computing Lab

The Genetic Algorithm for Solving the
Quadratic Assignment Problem and

Continuous Problem

2005/5/12

 2

1. Introduction

The work solves the quadratic assignment problem (QAP) and continuous
problem by genetic algorithm (GA). Then, we also introduce some techniques that
attend to improve the solution quality, including the elitism, multiple crossover
operators, and multiple mutation operators. Furthermore, the work also develops a
callable component, which is named OpenGA. The goal of designing the component
is to reduce the complexity and easy to use when we solve different kinds of problem.
The work is organized as following.

The section 2 and section 3 describe how to solve QAP and continuous problem

by GA. Then, the study composes an object-oriented component written in Java. The
study describes the structure of the OpenGA by UML diagrams, which presents in
section 4. Section 5 is the experimental result of the two cases and the section 6 is the
discussion and conclusions.

 3

2. Solving the QAP

The study presents the fundamental procedures and methods of GA to solve the
QAP. Therefore, the encoding method and generating an initial solution are discussed
in the beginning. Then, the next ones are evaluating the new solutions, fitness
assignment, selection and elitism, crossover, mutation, replacement, and stopping
criterion. Furthermore, the elitism strategy, multiple crossover operators, and multiple
crossover operators are included in the procedure. The figure below expresses the
procedures of the modified GA. The following sub-sections describe them in detail.

Yes

No

Start

Encoding

Initial
Population

Flow matrix
Distance matrix

Evaluate
Fitness

Function

Reproduction by
Binary tournament

Multiple
crossover

Multiple
mutation

Population
Maintenance

End

Selection :
Elitism

i=0

If i=Generation
i++

 4

2.1 Generate an Initial Solution
The encoding strategy for the QAP, which is one of the combinatorial

optimization problems, the sequential encoding type is employed here. Then, each
chromosome can be randomly generated an initial solution for the problem which
assigns each department at exactly one dimension. The work adopts the Nug30 as an
example and the figure 2.1 presents the encoding of QAP for the 30 departments,
which shows the department 14 at the first position, department 5 at the second
position, and so on. Thus, the initial solution is done after we deal with the encoding
and to generate initial solution.

14 5 28 24 … . 12 11 23

Figure 2.1 the problem representation of the QAP for 30 departments

2.2 Evaluate the Objective Value

The objective function of QAP is

min ijij
1

1

0
Df ×∑∑=

+=

−

=

n

ij

n

i
Z (1)

 ijD : The distance between the locations at i and j.

ijf : The flow between the departments i and j.

By the objective function, it calculates the summary distance from one

department to the other one by the flow quantity between the two departments.
Suppose the new solution is 14-15-28… -23, the procedure to perform the calculation
of the objective value are:

For department 14: 4*5 + 5*1 + 6*5 + … + 6*5 + 5*0 + 5*1
For department 5 : 4*2 + 5*0 + … + 3*0 + 2*6 + 4*4
For department 28: 4*0 + … + 6*0 + 5*3 + 3*1

 M M
 M M

For department 12: 0*0 + 2*6
For department 11: 3*0

The optimal assignment of Nug30 in QAPLIB is shown as 14, 5, 28, 24, 1, 3, 16,

 5

15, 10, 9, 21, 2, 4, 29, 25, 22, 13, 26, 17, 30, 6, 20, 19, 8, 18, 7, 27, 12, 11, and 23.
Besides, its objective value is 3062.

2.3 Fitness Assignment

The fitness value is depended on the objective value and it is to determine the
goodness of a chromosome. The work uses the normalization method to transform the
fitness value. The equation is as follows.

fitnessi =
minmax

min

ff
ffi

−
−

 (2)

where

if : The objective value of individual i.
minf : The minimum objective value of current population.
maxf : The maximum objective value of current population.

After the normalization, each fitness value is between 0 and 1 and the larger

objective value yields larger fitness value. Because the problem is a minimization
problem, we select the chromosomes with smaller fitness value.

2.4 Elitism and Selection

The purpose of elitism is to preserve better chromosomes so that crossover
operator or mutation operator won’t destroy it, and keep it to the next generation. If
it’s a single objective problem, we use selection sort algorithm which is a type of
sorting algorithm. Therefore, we select a proportional better chromosome and store
them into the external achieve. For example, if the elitism is 20% of original
population size, we pick the top 20% individual. Then, if it’s multiple-objective
problem, we select all non-dominated solutions into archive.

Besides, the better individuals in the archive will be selected into the mating pool.
The size of selecting from archive is depended on the proportion we set before. If it’s
20%, we select 20%*popSize of better chromosomes into the pool. When the
20%*popSize is less than the actual length of archive, we directly copy them all into
the mating pool. However, if the length of archive is larger than the 20% of original
population size, we randomly pick the 20% of individuals from the archive.

After selecting the elite chromosomes, the next stage is accomplished by binary
tournament. We randomly pick two individuals in the same population and compare
their fitness value. The chromosome with smaller fitness value will be the winner and
put it into the mating pool. The procedure is repeated until the size in the mating pool
is up to the population size.

 6

2.5 Crossover
The selection procedure selects better chromosomes into the mating pool. The

crossover procedure is randomly selecting two chromosomes to mate. There are
several crossover methods for combination problem. Besides, the multiple crossover
strategy is used in the GA procedure. They are the position-based crossover and PMX
(Partial Message Crossover). They are shown as follows:

Syswerdra (1989) proposes a position-based crossover. There are two versions of

the method, including two point crossover and single point crossover. We demonstrate
the former one by an example. The steps are:

1. Select two chromosomes and named it as parent 1 and parent 2.
2. Determine the two cut points, suppose they are at i and j, transfer the genes

which outside the range from i to j to the offspring in the same position.
From the figure 2.2, the cut points are at 3 and 7 and the transferring result is
at figure 2.3.

3. Copy other genes which inside the range of parent 1 in the order of relative
gene position of parent 2 and it shows at figure 2.4.

 ↓ ↓

Position 1 2 3 4 5 6 7 8 9 10
Parent 1 11 12 13 14 15 16 17 18 19 20

Position 1 2 3 4 5 6 7 8 9 10
Parent 2 11 16 14 17 12 13 19 20 18 15

Figure 2.2 The two parent chromosomes and determination of the two cut points

Position 1 2 3 4 5 6 7 8 9 10
Offspring 11 12 18 19 20

Figure 2.3 Copy genes of Parent 1

Position 1 2 3 4 5 6 7 8 9 10
Offspring 11 12 16 14 17 13 15 18 19 20

Figure 2.4 Copy other genes to offspring.

 7

The PMX process is as follows：

Step 1: Select two parents P1 and P2 randomly from population.
Step 2: Generate two crossover points cp1 and cp2 randomly. Then, exchange two

substrings, which defined by two positions, between parents P1 (4, 5, 6, 7
in Figure 2) and P2 (2, 8, 3, 4 in Figure 2) to product C1 and C2.

Step 3: Exchange the genes which are already in the substring from the parent P2
and P1, for example the second gene of C1: 2->4->7.

 1cp 2cp

Figure 2.5 PMX process

2.6 Mutation

The purpose of mutation like crossover is to do a variation on the current
chromosome. The same with the crossover stage, we also employ the multiple
mutation strategy. The mutation strategies include swap mutation, and shift mutation.
They are described below.

The swap mutation is very easy to implement because it just has to set two
positions and exchange the two values of its position. The result is shown in the figure
2.6.

6

2 9 5 3 4 8 0 6

2 0 5 3 4 8 9

Swap point 1

7 1

7 1

Before

After

Swap point 2

Figure 2.6 the swap mutation

As for the shift mutation, it needs to randomly generate two cut points. We may
call it cut point 1 and cut point 2. We move the cut point 2 ahead the position of the

1P ： 1 2 3 4 5 6 7 8 9 10

2P ： 7 1 6 2 8 3 4 9 10 5

1C ： 1 7 6 2 8 3 4 5 9 10

2C ： 2 1 3 4 5 6 7 9 10 8

 8

range so that it replaces the original cut point 1. Then, shifting all point forward for
one space until at the end of element on cut point 2. (Because it has been moved to the
place of cut point 1) Thus, the shift mutation is done. The figure 2.7 shows how the
shift mutation works which supposes there are 10 departments.

6

2 9 5 3 4 8 0 6Before

2 0 9 5 3 4 8After

Cut point 1 Cut point 2

7 1

7 1

Figure 2.7 Shift mutation

2.7 Replacement and Stopping Criterion

The replacement strategy is total replacement for the QAP problem. For example,
if the original population size is µ and the offspring is λ , then the offspring λ
will replace µ of original population. Finally, the stopping criterion of the algorithm

is depended on the number of generations.

2.8 General Procedure of Genetic Algorithm

Because the GA platform developed by the work is not only able to implement
simple GA but also extended to several purposes. First, the elitism strategy is
employed in the selection stage, we copy a elite individuals into the mating pool.
Besides, the concept of multiple crossover and multiple mutation operator are used
here. Therefore, the pseudo code are presented as follows.

1. Initialize()
2. Fitness()
3. counter ß 0
4. while counter < Iteration1 do
5. for i = 1 to ns do
6. FindPareto()
7. Fitness()
8. Elitism()
9. Selection()
10. Crossover() //the secondary crossover operator may be implemented

 9

11. Mutation() //the secondary mutation operator may be implemented
12. Replacement()
13. end for
14. counter ß counter + 1
15. end while

 10

3. Solving the Continuous Problem

 The process of GA includes initialization, fitness function, selection, crossover,
mutation, population maintenance, and stop rule. By the way, we try two different
kinds of GA to do the experiment. The first one is called simple GA. The second is
named the modified GA, whose structure is the same in section 2. Moreover, the
encode type of the modified GA is encoded in real code. Therefore, there are some
different places when we do the crossover and mutation process between the simple
GA and modified GA. We will introduce these procedures as follows.

3.1 Initialization

We encode this problem as bit string. To Start with, we generate the initial
population randomly. Because this is a continuous problem, we should do precision of

bit encoding:
12 −

−
l

ba

Where

a : upper bound
b : lower bound
l : chromosome length

Then, we decode by ∑
−

=
− ××

−
−

+
1

0

2
12

l

j

j
jll

s
ba

b

where ()lssx K,1=

3.2 Fitness Function

The fitness function in GA is a measure of goodness of a chromosome (solution)
to the objective function. The fitness function of an individual chromosome is directly
equal to its objective function value as follows:

Min () () ()[]2
2

2
1

22
21

2
2

2
1 231.07)11(−+−×+−++−+= xxxxxxz

1x : The first dimension

2x : The second dimension

3.3 Selection

During selection phase, parent solutions are selected from the current population.
The selecting method we use is binary tournament method. It is a simple way because
it just selects two different parents randomly and compares their fitness value. So the
better chromosome is selected into the mating pool.

 11

3.4 Crossover
In this phase, there exists some differences. In simple GA, we chose the single

point crossover method. The method works as follows:

Step 1: Select two parents P1 and P2 randomly from population.
Step 2: Generate one crossover point cp1 randomly. Then, exchange two

substrings, which defined by two positions, between parents P1 (1, 1, 1)
and P2 (1, 0, 0) to product C1 and C2.

 1cp

Figure3.1 example of single point crossover

However, in the modified GA, we use arithmetic crossover method and

intermediate crossover method because its encoding is in real code. The arithmetic
crossover method works as follows:

Step 1: Select two parents P1 and P2 randomly from population.
Step 2: Set a α value. The offspring X’ will be () 21 1 XX ×−+× αα . Shown as

the below figure.

 Assume α =0.5

 325.045.0 =×+×
Figure3.2 An example of arithmetic crossover

The intermediate crossover method works as follows:

Step 1: Select two parents P1 and P2 randomly from population.
Step 2: The offspring X’ will be ()121 XXuX −×+ . u∈U [0, 1] Shown as the

below figure.

1P ： 1 0 1 1 1 1

2P ： 0 1 1 1 0 0

1C ： 1 0 1 1 0 0

2C ： 0 1 1 1 1 1

1P ： 1 2 3 4 5 6

2P ： 5 1 3 2 6 4

1C ： 3

 12

 Assume u=0.5

 () 3425.04 =−+

Figure3.3 example of intermediate crossover

3.5 Mutation

In this phase, there still exists some difference. In simple GA, we used bit flip
method. The method works as follows. Generate a random number between 1 and N
(gene numbers). For example, if we produce the random number i, change the ith
allele. Also we can say the original value 1 will change to 0.The original value 0 will
change to 1.

 Assume random number is 3

Figure3.4 Example of bit flip

However, in the modified GA, the mutation strategy of real coding for
continuous problem uses moving current solution up or down that is depending on
random probability. If U(0,1) is larger than 0.5, the current value moves up; otherwise,
moves down. The moving length is depended on the range from current position to
boundary. The equation of the mutation strategy below:





×−+=
×−+=

)1,0()(
)1,0()(

UlwBoundsxxx
UxupBoundxx

iiii

iiii
otherwise

if

5.0)1,0(>U

Hence, if the original xi is –2.4 and there is a random value U(0,1) = 0.6 for

judging the value to go up or go down, the value moves up. Besides, the other random
value U(0,1) = 0.1, the xi -2.4 + (6 – (-2.4))*0.1 = -1.56.

3.6 Population Maintenance

During population maintenance phase, we use two evolutionary strategies to do
the experiment. One is comma strategy. It generates 300 offspring from 300 parents

1P ： 1 2 3 4 5 6

2P ： 5 1 3 2 6 4

1C ： 3

1C ： 1 0 1 0 1 0 1
'
1C ： 1 0 0 0 1 0 1

 13

and replaces all parents. The other one is plus strategy. It generates 300 offspring from
300 parents and selects the 300 best individuals from the 600 individuals.

3.7 Stop Rule

When maximum number of generations is reached, this experiment will stop.

 14

4. An Object-Oriented Component Design

4.1 Introduction of the Component and Its Interfaces
The second goal of the study is to provide a well-designed callable component to

implement GA, which is named OpenGA. OpenGA defines some general interfaces
for each procedure of GA and is able to solve different kinds of problems, including
the combinatorial problem and continuous problem. Moreover, it not only supports
the multiple-objective problem but also the single objective problem. Based on the
development platform, the SPGA is implemented by OpenGA. The following table
shows these procedures’ corresponding interfaces.

Table 4.1 the purposes and its corresponding interfaces

Purposes Interface

Control the main procedures of GA MainI

Select better individual into the mating pool SelectI
Crossover CrossoverI
Mutation MutationI

Evaluation of objective functions ObjectiveFunctionI
To calculate the fitness of each chromosome FitnessI

A solution class to store chromosome and forms a
population

populationI

Take the MainI for example, it is an interface which defines the behavior of main

procedures, such as starting GA, initializing a population, selection, mating, mutation,
calculating objective values, assigning fitness, and so on. Furthermore, the OpenGA
provides interfaces to accept auxiliary crossover and mutation operators. Both of them
can be integrated into the standard procedure of crossover and mutation. The multiple
crossover and mutation operator may benefit the solution diversity. Then, if we want
to add others method, we can simply add it to the additional method. The figure 4
shows the structure of MainI which is presented by UML diagram. It also describes
the there are two classes, SingleThreadGA, implement the Main. Moreover, there are
some applications will call the interface, such as flow shop, Himmelblau,
parallelMachine, QAP_NVR and singleMachine problem. The Himmelblau is a
single objective continuous function. Therefore, the OpenGA is applicable to solve
different kinds of problems.

 15

Figure 4.1 the main program of OpenGA

4.2 Classes of the Component

Although the interfaces define the expected behavior of the object, it can’t do
anything because there is no code in the interface. However, the class programs will
implement these interfaces and execute specific actions. The table 2 points out the
purposes of different classes and the interfaces that they implement.

Table 4.2 the classes in OpenSA

Purpose Class name Implements the interface

The main
procedures of GA
when solving the

combinatorial
problem

SingleThreadGA
SingleThreadGAwithMultiple-

CrossoverAndMutation
FixWeightScalarization

SPGAwithSharedParetoSet

MainI

Select better
individual into the

mating pool

binaryTournament
rouletteWheel

trinaryTournament
varySizeTournament

SelectI

Crossover twoPointCrossover2
PMX

ArithmeticCrossover
intermediateCrossover

CrossoverI

 16

InverseMutation
ShiftMutation
swapMutation

MutationI Mutation

realValueMutation RealMoveI
ObjectiveFunctionContinuous

ObjectiveFunctionI Evaluation of
objective functions

ObjectiveMakeSpan
ObjectiveTardiness

ObjectiveTardinessForFlowShop

ObjectiveFunctionScheduleI

To calculate the
fitness of each
chromosome

GoldbergFitnessAssignment
FitnessByScalarizedM_objectives

singleObjectiveFitness

FitnessI

A solution class to
store chromosome

and forms a
population

population populationI

Take the singleThreadGA for instance, the class implements the solution MainI, so the
methods (setData, setSecondaryCrossoverOperator, setSecondaryMutationOperator,
startGA,…) defined by MainI are all implemented at singleThreadGA. The figure 5
shows the UML diagram of singleThreadGA.

 17

Figure 4.2 The UML diagram of Main procedure of GA

 18

5. Experiment Result

The experimental result includes the QAP problem of Nug30 and the continuous
problem of Himmelblau function. The changing of crossover rate, changing mutation
rate, and changing the random number seed are considered in both cases. Moreover,
the work uses some statistical skills to analyze the experiment result.

The working environment is as follows:

OS Microsoft Windows XP Professional Service Pack 1

CPU Intel Pentium 4, 2.8 GHz

RAM 1024 MB (DDR SDRAM)

Coded by MATLAB 7.0 & JAVA (We compile the Java program into
the native binary code. It’s done by a Java JITs compiler.)

From above description, there are three main factors. To simplicity, they are

named as follows:

X: The effect from changing crossover rate whose treatments are 3
Y: The effect from changing mutation rate whose treatments are 3
Z: The effect from changing random seed whose treatments are 10

Hence, the Statistics model can be represented as following:
T = X + Y + X Y + Z + X Z + Y Z

Where

T: The objective value for QAP or Himmelblau function

From the Statistics model shows we consider the interaction between two factors.
However, since the probability of interaction among the three factors is rare, it is not
taken into consideration.

5.1 QAP Experimental Result

Before the experiment begins, we have some parameters settings as follows:
Ø Generation = 1000
Ø Initial population size = 500
Ø Population size = 300

 19

Ø Crossover rate = {1, 0.8, 0.6}
Ø Mutation rate = {0.05, 0.2, 0.4}
Ø Random number seed = 500~509

The experiment result of QAP shows at the table 5.1 which has 90 combinations.

Table 5.1 the experimental result of QAP experiment

Counter Seed Crossover Rate Mutation Rate Obj Value Time

0 500 1 0.05 3188 18.86

1 500 1 0.2 3138 18.172

2 500 1 0.4 3198 18.547

3 500 0.8 0.05 3140 17.469

4 500 0.8 0.2 3134 17.656

5 500 0.8 0.4 3163 17.703

6 500 0.6 0.05 3138 16.938

7 500 0.6 0.2 3141 16.985

8 500 0.6 0.4 3143 17.625

9 501 1 0.05 3149 18.187

10 501 1 0.2 3291 17.938

11 501 1 0.4 3192 18.359

12 501 0.8 0.05 3197 17.437

13 501 0.8 0.2 3120 17.359

14 501 0.8 0.4 3192 17.719

15 501 0.6 0.05 3190 16.89

16 501 0.6 0.2 3257 17.032

17 501 0.6 0.4 3191 17.234

18 502 1 0.05 3227 17.922

19 502 1 0.2 3115 18.109

20 502 1 0.4 3224 18.766

21 502 0.8 0.05 3188 17.531

22 502 0.8 0.2 3210 17.484

23 502 0.8 0.4 3163 17.937

24 502 0.6 0.05 3142 16.985

25 502 0.6 0.2 3128 16.656

26 502 0.6 0.4 3202 17.172

27 503 1 0.05 3157 17.422

28 503 1 0.2 3196 17.813

29 503 1 0.4 3246 17.828

 20

30 503 0.8 0.05 3273 17.047

Counter Seed Crossover Rate Mutation Rate Obj Value Time

31 503 0.8 0.2 3129 17.343

32 503 0.8 0.4 3198 17.454

33 503 0.6 0.05 3174 16.531

34 503 0.6 0.2 3194 16.735

35 503 0.6 0.4 3165 16.89

36 504 1 0.05 3250 17.579

37 504 1 0.2 3104 17.781

38 504 1 0.4 3212 18.172

39 504 0.8 0.05 3170 17.719

40 504 0.8 0.2 3215 17.703

41 504 0.8 0.4 3141 17.938

42 504 0.6 0.05 3166 17.047

43 504 0.6 0.2 3127 17.093

44 504 0.6 0.4 3221 17.266

45 505 1 0.05 3158 18.25

46 505 1 0.2 3123 18.296

47 505 1 0.4 3189 18.703

48 505 0.8 0.05 3167 17.563

49 505 0.8 0.2 3190 17.765

50 505 0.8 0.4 3159 17.782

51 505 0.6 0.05 3137 17.297

52 505 0.6 0.2 3143 17.078

53 505 0.6 0.4 3148 17.641

54 506 1 0.05 3203 18.562

55 506 1 0.2 3152 18.328

56 506 1 0.4 3221 18.703

57 506 0.8 0.05 3168 17.672

58 506 0.8 0.2 3116 17.922

59 506 0.8 0.4 3135 18

60 506 0.6 0.05 3162 17.203

61 506 0.6 0.2 3195 17.11

62 506 0.6 0.4 3175 17.39

63 507 1 0.05 3213 18.219

64 507 1 0.2 3263 18.406

65 507 1 0.4 3205 18.782

66 507 0.8 0.05 3199 17.687

 21

67 507 0.8 0.2 3188 17.984

Counter Seed Crossover Rate Mutation Rate Obj Value Time

68 507 0.8 0.4 3192 18.188

69 507 0.6 0.05 3141 17.093

70 507 0.6 0.2 3162 17.219

71 507 0.6 0.4 3177 17.718

72 508 1 0.05 3226 18.234

73 508 1 0.2 3142 18.5

74 508 1 0.4 3208 18.563

75 508 0.8 0.05 3147 17.75

76 508 0.8 0.2 3155 17.656

77 508 0.8 0.4 3143 18.156

78 508 0.6 0.05 3254 17.547

79 508 0.6 0.2 3117 17.391

80 508 0.6 0.4 3177 17.484

81 509 1 0.05 3222 18.031

82 509 1 0.2 3124 18.281

83 509 1 0.4 3166 18.609

84 509 0.8 0.05 3147 17.688

85 509 0.8 0.2 3199 18

86 509 0.8 0.4 3227 18.203

87 509 0.6 0.05 3147 17.109

88 509 0.6 0.2 3144 17.422

89 509 0.6 0.4 3144 17.5

First, we observe every individual value by the scatter plot.

 22

seed

o
b
jV
a
lu
e

509508507506505504503502501500

3300

3250

3200

3150

3100

mutationRate

o
b
jV
a
lu
e

0.400.200.05

3300

3250

3200

3150

3100

crossoverRate

o
b
jV
a
lu
e

1.00.80.6

3300

3250

3200

3150

3100

Individual Value Plot of objValue vs seed Individual Value Plot of objValue vs mutationRate

Individual Value Plot of objValue vs crossoverRate

Figure 5.1 scatter plots of QAP

 From above figure, we can get some information:
Ø In random seed scatter plot, we cannot find any rule from it. In other words,

it seems different seeds don’t influence obj value.
Ø In mutation rate scatter plot, we can find when mutation rate = 0.2, dots

spread more widely. On the other hand, dots are highly concentrated when
mutation rate =0.4. In view of average obj value, it seems no difference
among the three mutation levels we set.

Ø In crossover rate scatter plot, we can find when crossover rate = 1, dots
spread more widely. In view of average obj value, it still seems no
difference among the three crossover levels we set.

 23

From above ANOVA result, we find that all p-value are larger than 0.05. In
another word, we can’t find any factor that can cause significant difference.

M
ea
n
of
 o
bj
V
al
ue

0.400.200.05

3200

3190

3180

3170

3160

1.00.80.6

509508507506505504503502501500

3200

3190

3180

3170

3160

mutationRate crossoverRate

seed

Main Effects Plot (data means) for objValue

Figure 5.2 Main effects plot of QAP

Figure 5.2 shows when we apply the mutation rate = 0.2 and crossover rate
= 100, it may be able to find better solution than others treatments.

According to above analysis, the random seed is deleted in order to estimate

Analysis of Variance for objValue

Source DF SS MS F P

seed 9 17973 1997 1.05 0.424

crossoverRate 2 8944 4472 2.34 0.110

mutationRate 2 7230 3615 1.89 0.165

seed*crossoverRate 18 18713 1040 0.54 0.915

seed*mutationRate 18 16740 930 0.49 0.947

crossoverRate*mutationRate 4 4519 1130 0.59 0.670

Error 36 68684 1908

Total 89 142804

 24

the variance from other two factors more precisely. The revised statistics result is
as follows.

From above ANOVA result, we also find that all p-value are larger than 0.05.
In another word, the experiment model still not causes any significant difference.

Here, we conduct the other experiment in order to know the effect of elitism
and number of generations. The parameters setting is as follows:
Ø Generation = {400, 700, 1000}
Ø Population size = 300
Ø Elitism= {0.05, 0.1, 0.2, 0.3}
Ø Crossover rate = 0.6
Ø Mutation rate = 0.2
Ø Random number seed = 0~9

From above ANOVA result, we find that all p-value are larger than 0.05. In

Analysis of Variance for objValue

Source DF SS MS F P

crossoverRate 2 8944 4472 2.97 0.057

mutationRate 2 7230 3615 2.40 0.097

crossoverRate*mutationRate 4 4519 1130 0.75 0.561

Error 81 122110 1508

Total 89 142804

Analysis of Variance for objValue

Source DF SS MS F P

elitism 3 5933 1978 1.37 0.261

generations 2 704 352 0.24 0.784

seed 9 5019 558 0.39 0.936

elitism*seed 27 43847 1624 1.13 0.345

generations*seed 18 31255 1736 1.21 0.290

elitism*generations 6 5772 962 0.67 0.676

Error 54 77753 1440

Total 119 170283

 25

another word, we can’t find any factor that can cause significant difference.

M
ea
n
of
 o
bj
V
al
ue

0.300.200.100.05

3180

3175

3170

3165

3160

1000700400

9876543210

3180

3175

3170

3165

3160

elitism generations

seed

Main Effects Plot (data means) for objValue

Figure 5.3 New experiment main effects plot of QAP

Figure 5.3 shows when we apply the elitism = 0.2 and generations = 1000, it may
be able to find better solution than others treatments.

From above analysis, we still try to ignore the influence of random seed.
The result is as follows.

From above ANOVA result, we also find that all p-value are larger than 0.05.
In another word, we can’t find any factor that can cause significant difference.

From here, we turn to focus on the relationship between time and the three
factors.

Analysis of Variance for objValue

Source DF SS MS F P

elitism 3 5933 1978 1.35 0.261

generations 2 704 352 0.24 0.786

elitism*generations 6 5772 962 0.66 0.684

Error 108 157874 1462

Total 119 170283

 26

The ANOVA tells us only the p-value of generation*seed greater than 0.05.In
other words, all factors except generation*seed cause significant difference.

M
ea
n
of
 t
im
e

0.300.200.100.05

20

15

10

1000700400

9876543210

20

15

10

elitism generations

seed

Main Effects Plot (data means) for time

Figure 5.4 New experiments for time main effects plot of QAP

Figure 5.4 shows when we apply the elitism = 0.05 and generations = 400, it may

Analysis of Variance for time

Source DF SS MS F P

elitism 3 368.460 122.820 1979.08 0.000

generations 2 2739.830 1369.915 22074.36 0.000

elitism*generations 6 44.116 7.353 118.48 0.000

seed 9 18.015 2.002 32.26 0.000

elitism*seed 27 5.243 0.194 3.13 0.000

generations*seed 18 1.919 0.107 1.72 0.065

Error 54 3.351 0.062

Total 119 3180.934

 27

be able to find solution effectively than others treatments.

5.2 Continuous Problem Result
Before the experiment begins, we have some parameters settings as fo llows:
Ø Generation = 500
Ø Initial population size = 500
Ø Population size = 300
Ø Crossover rate = {1, 0.8, 0.6}
Ø Mutation rate = {0.05, 0.2, 0.4}
Ø Random number seed = 500~519

After the experiment, we find both simple GA and the modified GA have obj
value =0. Thus, we just list the modified GA experiment result of continuous
problem shows at the table 5.2 which has 90 combinations. You can see the
simple GA experiment result of continuous problem in appendix I.

Table 5.2 the experimental result of continuous problem experiment

counter seed Crossover Mutation X1 X2 Obj Value Time(sec)

0 500 1 0.05 2.999999097 2.000002356 0.000000 3.016

1 500 1 0.2 2.999998792 2.000004245 0.000000 2.89

2 500 1 0.4 2.999999748 1.999998908 0.000000 2.875

3 500 0.8 0.05 2.999999972 1.999999408 0.000000 2.891

4 500 0.8 0.2 2.999999978 2.00000005 0.000000 2.938

5 500 0.8 0.4 3.000000013 1.999999973 0.000000 2.875

6 500 0.6 0.05 3 2 0.000000 2.75

7 500 0.6 0.2 3 2 0.000000 2.968

8 500 0.6 0.4 3 2 0.000000 2.875

9 501 1 0.05 2.999999059 1.999998786 0.000000 2.891

10 501 1 0.2 2.999998344 2.00001578 0.000000 3.016

11 501 1 0.4 2.999997849 2.000000846 0.000000 2.968

12 501 0.8 0.05 3.000000067 1.999999941 0.000000 2.953

13 501 0.8 0.2 2.99999998 1.999999882 0.000000 2.907

14 501 0.8 0.4 3.000000119 1.999999731 0.000000 2.922

15 501 0.6 0.05 3 2 0.000000 3.39

16 501 0.6 0.2 3 2 0.000000 3.188

17 501 0.6 0.4 3 2 0.000000 3.125

18 502 1 0.05 2.999999929 1.999996283 0.000000 2.937

19 502 1 0.2 3.000000211 2.000000633 0.000000 2.985

 28

20 502 1 0.4 2.999995482 2.000004467 0.000000 2.953

21 502 0.8 0.05 2.999999955 1.999999896 0.000000 2.937

counter seed Crossover Mutation X1 X2 Obj Value Time(sec)

22 502 0.8 0.2 3.000000009 1.999999999 0.000000 2.906

23 502 0.8 0.4 3.000000059 1.999999933 0.000000 2.985

24 502 0.6 0.05 3 2 0.000000 2.922

25 502 0.6 0.2 3 2 0.000000 2.859

26 502 0.6 0.4 3 2 0.000000 2.859

27 503 1 0.05 2.999999066 1.999997377 0.000000 2.985

28 503 1 0.2 3.000001852 1.999996783 0.000000 3.031

29 503 1 0.4 2.999998408 2.000000158 0.000000 3.062

30 503 0.8 0.05 2.999999997 2.00000001 0.000000 2.922

31 503 0.8 0.2 2.999999998 2.000000018 0.000000 3.016

32 503 0.8 0.4 2.999999996 2.000000003 0.000000 3.218

33 503 0.6 0.05 3 2 0.000000 3.063

34 503 0.6 0.2 3 2 0.000000 3.062

35 503 0.6 0.4 3 2 0.000000 3.172

36 504 1 0.05 3.000002028 1.999996789 0.000000 3.235

37 504 1 0.2 3.000000076 2.000001914 0.000000 3.109

38 504 1 0.4 2.999999826 2.000000886 0.000000 3.297

39 504 0.8 0.05 2.999999897 1.999999834 0.000000 3.14

40 504 0.8 0.2 3.000000019 1.99999997 0.000000 3.235

41 504 0.8 0.4 3.000000006 2.000000011 0.000000 3.015

42 504 0.6 0.05 3 2 0.000000 3.063

43 504 0.6 0.2 3 2 0.000000 3.078

44 504 0.6 0.4 3 2 0.000000 3.25

45 505 1 0.05 2.999999418 2.000000835 0.000000 3.14

46 505 1 0.2 2.999999397 1.999997856 0.000000 3.109

47 505 1 0.4 3.000002124 1.99999787 0.000000 3.297

48 505 0.8 0.05 2.999999818 2.000000067 0.000000 3.078

49 505 0.8 0.2 2.999999953 2.00000006 0.000000 3.125

50 505 0.8 0.4 2.999999989 1.999999927 0.000000 3.204

51 505 0.6 0.05 3 2 0.000000 3.062

52 505 0.6 0.2 3 2 0.000000 3.14

53 505 0.6 0.4 3 2 0.000000 3.016

54 506 1 0.05 3.000000553 2.000000757 0.000000 3.344

55 506 1 0.2 3.000003807 1.999999333 0.000000 3.125

56 506 1 0.4 2.999998152 2.000003556 0.000000 3.203

 29

57 506 0.8 0.05 2.999999989 1.999999677 0.000000 3.094

58 506 0.8 0.2 2.999999984 2.000000016 0.000000 3.203

counter seed Crossover Mutation X1 X2 Obj Value Time(sec)

59 506 0.8 0.4 3.000000036 1.999999892 0.000000 3.11

60 506 0.6 0.05 3 2 0.000000 3.109

61 506 0.6 0.2 2.999999999 2 0.000000 3.109

62 506 0.6 0.4 3 2 0.000000 3.359

63 507 1 0.05 2.999998408 1.999993363 0.000000 3.172

64 507 1 0.2 3.000002072 1.999995053 0.000000 3.422

65 507 1 0.4 3.000001251 1.99999925 0.000000 3.453

66 507 0.8 0.05 3.00000001 2.000000016 0.000000 3.281

67 507 0.8 0.2 2.999999997 1.999999985 0.000000 3.125

68 507 0.8 0.4 2.999999983 2.000000037 0.000000 3.141

69 507 0.6 0.05 3 2 0.000000 3.031

70 507 0.6 0.2 3 2 0.000000 3.328

71 507 0.6 0.4 3 2 0.000000 3.781

72 508 1 0.05 2.999999218 1.999999496 0.000000 3.281

73 508 1 0.2 2.999997909 1.999992512 0.000000 3.219

74 508 1 0.4 3.000000113 1.999997368 0.000000 3.11

75 508 0.8 0.05 2.999999934 2.000000014 0.000000 3.156

76 508 0.8 0.2 3.000000021 1.999999866 0.000000 3.109

77 508 0.8 0.4 2.999999895 1.999999955 0.000000 3.188

78 508 0.6 0.05 3 2 0.000000 3.125

79 508 0.6 0.2 3 2 0.000000 3.015

80 508 0.6 0.4 3 2 0.000000 3.094

81 509 1 0.05 3.000000294 2.000001952 0.000000 3.11

82 509 1 0.2 2.999996894 2.000005954 0.000000 3.265

83 509 1 0.4 2.999999771 2.000000561 0.000000 3.156

84 509 0.8 0.05 2.999999997 2.000000052 0.000000 3.094

85 509 0.8 0.2 2.999999959 1.999999757 0.000000 3.203

86 509 0.8 0.4 2.999999995 1.999999989 0.000000 3.094

87 509 0.6 0.05 3 2 0.000000 2.968

88 509 0.6 0.2 3 2 0.000000 2.907

89 509 0.6 0.4 3 2 0.000000 2.875

 30

seed

o
b
jV
al
u
e

508506504502500

0.50

0.25

0.00

-0.25

-0.50

crossoverRate

o
b
jV
al
u
e

1.00.90.80.70.6

0.50

0.25

0.00

-0.25

-0.50

mutationRate

o
bj
V
a
lu
e

0.40.30.20.10.0

0.50

0.25

0.00

-0.25

-0.50

Scatterplot of objValue vs seed Scatterplot of objValue vs crossoverRate

Scatterplot of objValue vs mutationRate

Figure 5.5 scatter plots of continuous problem

We observe every individual value by the scatter plot and obtain some
information:
Ø No matter seed scatter plot, crossover rate scatter plot or mutation rate

scatter plot, we can see the obj value all = 0 in each treatment. In other
words, we cannot find any factor that can cause significant difference.

 31

6. Discussion and Conclusions

The study does two experiments in combinatorial problem and continuous
problem. Besides, in order to obtain better solution quality, there are some procedures,
elitism and multiple crossover operators and multiple mutation operators, which are
added in the GA process. The elitism is to copy better chromosomes in the external
archive and let these individuals to join the mating procedure. The purpose of
employing the multiple crossover operators and multiple mutation operators is to do
more variation on each chromosome. The effort will increase the diversity of the
chromosomes.

From the first experiments of QAP, the study found GA might not be sensitive to
parameters, such as crossover rate and mutation rate, which don’t cause significant
difference. However, after we eliminate the factor of random number seed, the
P-value of crossover rate and mutation rate become 0.057 and 0.097 respectively. (In
statistics point of view, the factor doesn’t cause significant can be ignored.) If we set
the α = 0.05, both of them are still not significant but they close to cause the
significant difference. Hence, according to the revised ANOVA table, we suggest that
to use the crossover rate is 0.6 and the mutation rate is 0.2. It may accordance to some
researches’ finding about “to apply the higher crossover rate with lower mutation rate
or lower crossover rate with higher mutation rate.”

The study further examines the effect of elitism and generations in the QAP
problem. Besides, the objective value and implementation are considered in the
statistic model. As for the number of elite, we can’t explain how many elites are
required during selection. It may need further experiment to know the truth. However,
the time is significant when applying different proportion elite. The larger elite size, it
causes the higher computational time. According the finding, we may not select too
many elites in the external archive.

Then, although the generation 1000 is slightly better than 400 and 700
generations in average, the longer generation causes more time to calculate the
solutions in generations. It is not necessary to run 1000 generation. So the work
suggest that we can use 400 generation to solve the problem size which is 30 because
400 generations is as good as 1000 generations and it’s enough to obtain satisfactory
solution quality.

The study compares the simple GA and the modified genetic algorithm in

 32

continuous problem, which shows the simple GA is as good as modified GA. The
reason may be the problem that is easy to solve, the more complex approach can’t
present its effort clearly. Consequently, to test one testing function is not always
enough, the later study should test different kind of functions to clarify the effect of
modified GA in continuous problem.

Finally, the work designs and develops a component which is called OpenGA. It
has been proved that it’s able to solve the combinatorial problem and continuous
problem and both of them are single objective problem. Then, the ability of the
OpenGA can be extended to solve the multiple objectives problem. Because the
applications had been developed to solve scheduling problem, they may be shown in
the final term project.

