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1. Introduction 

The work solves the quadratic assignment problem (QAP) and continuous 
problem by genetic  algorithm (GA). Then, we also introduce some techniques that 
attend to improve the solution quality, including the elitism, multiple crossover 
operators, and multiple mutation operators. Furthermore, the work also develops a 
callable component, which is named OpenGA. The goal of designing the component 
is to reduce the complexity and easy to use when we solve different kinds of problem. 
The work is organized as following. 

 
The section 2 and section 3 describe how to solve QAP and continuous problem 

by GA. Then, the study composes an object-oriented component written in Java. The 
study describes the structure of the OpenGA by UML diagrams, which presents in 
section 4. Section 5 is the experimental result of the two cases and the section 6 is the 
discussion and conclusions. 
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2. Solving the QAP 

The study presents the fundamental procedures and methods of GA to solve the 
QAP. Therefore, the encoding method and generating an initial solution are discussed 
in the beginning. Then, the next ones are evaluating the new solutions, fitness 
assignment, selection and elitism, crossover, mutation, replacement, and stopping 
criterion. Furthermore, the elitism strategy, multiple crossover operators, and multiple 
crossover operators are included in the procedure. The figure below expresses the 
procedures of the modified GA. The following sub-sections describe them in detail. 
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2.1 Generate an Initial Solution 
The encoding strategy for the QAP, which is one of the combinatorial 

optimization problems, the sequential encoding type is employed here. Then, each 
chromosome can be randomly generated an initial solution for the problem which 
assigns each department at exactly one dimension. The work adopts the Nug30 as an 
example and the figure 2.1 presents the encoding of QAP for the 30 departments, 
which shows the department 14 at the first position, department 5 at the second 
position, and so on. Thus, the initial solution is done after we deal with the encoding 
and to generate initial solution. 
  

14 5 28 24 … . 12 11 23 
 

Figure 2.1 the problem representation of the QAP for 30 departments 
 
2.2 Evaluate the Objective Value  

The objective function of QAP is  
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 ijD : The distance between the locations at i and j. 

ijf : The flow between the departments i and j. 

 
By the objective function, it calculates the summary distance from one 

department to the other one by the flow quantity between the two departments. 
Suppose the new solution is 14-15-28… -23, the procedure to perform the calculation 
of the objective value are: 
 
For department 14: 4*5 + 5*1 + 6*5 + …  + 6*5 + 5*0 + 5*1 
For department 5  : 4*2 + 5*0 + …  + 3*0 + 2*6 + 4*4 
For department 28: 4*0 + …  + 6*0 + 5*3 + 3*1 

                M                 M  
              M            M  

For department 12: 0*0 + 2*6 
For department 11: 3*0 
 

The optimal assignment of Nug30 in QAPLIB is shown as 14, 5, 28, 24, 1, 3, 16, 
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15, 10, 9, 21, 2, 4, 29, 25, 22, 13, 26, 17, 30, 6, 20, 19, 8, 18, 7, 27, 12, 11, and 23. 
Besides, its objective value is 3062. 
 
2.3 Fitness Assignment  

The fitness value is depended on the objective value and it is to determine the 
goodness of a chromosome. The work uses the normalization method to transform the 
fitness value. The equation is as follows. 
 

fitnessi = 
minmax

min

ff
ffi

−
−

            (2) 

 
where 

if : The objective value of individual i. 
minf : The minimum objective value of current population. 
maxf : The maximum objective value of current population. 

 
After the normalization, each fitness value is between 0 and 1 and the larger 

objective value yields larger fitness value. Because the problem is a minimization 
problem, we select the chromosomes with smaller fitness value. 
 
2.4 Elitism and Selection 

The purpose of elitism is to preserve better chromosomes so that crossover 
operator or mutation operator won’t destroy it, and keep it to the next generation. If 
it’s a single objective problem, we use selection sort algorithm which is a type of 
sorting algorithm. Therefore, we select a proportional better chromosome and store 
them into the external achieve. For example, if the elitism is 20% of original 
population size, we pick the top 20% individual. Then, if it’s multiple-objective 
problem, we select all non-dominated solutions into archive.  
 

Besides, the better individuals in the archive will be selected into the mating pool. 
The size of selecting from archive is depended on the proportion we set before. If it’s 
20%, we select 20%*popSize of better chromosomes into the pool. When the 
20%*popSize is less than the actual length of archive, we directly copy them all into 
the mating pool. However, if the length of archive is larger than the 20% of original 
population size, we randomly pick the 20% of individuals from the archive. 
 

After selecting the elite chromosomes, the next stage is accomplished by binary 
tournament. We randomly pick two individuals in the same population and compare 
their fitness value. The chromosome with smaller fitness value will be the winner and 
put it into the mating pool. The procedure is repeated until the size in the mating pool 
is up to the population size. 
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2.5 Crossover 
The selection procedure selects better chromosomes into the mating pool. The 

crossover procedure is randomly selecting two chromosomes to mate. There are 
several crossover methods for combination problem. Besides, the multiple crossover 
strategy is used in the GA procedure. They are the position-based crossover and PMX 
(Partial Message Crossover). They are shown as follows: 

 
Syswerdra (1989) proposes a position-based crossover. There are two versions of 

the method, including two point crossover and single point crossover. We demonstrate 
the former one by an example. The steps are: 
 

1. Select two chromosomes and named it as parent 1 and parent 2. 
2. Determine the two cut points, suppose they are at i and j, transfer the genes 

which outside the range from i to j to the offspring in the same position. 
From the figure 2.2, the cut points are at 3 and 7 and the transferring result is 
at figure 2.3. 

3. Copy other genes which inside the range of parent 1 in the order of relative 
gene position of parent 2 and it shows at figure 2.4. 

 
                ↓                      ↓ 

Position 1 2 3 4 5 6 7 8 9 10  
Parent 1 11 12 13 14 15 16 17 18 19 20  

  
Position 1 2 3 4 5 6 7 8 9 10  
Parent 2 11 16 14 17 12 13 19 20 18 15  

Figure 2.2 The two parent chromosomes and determination of the two cut points 
 

Position 1 2 3 4 5 6 7 8 9 10  
Offspring 11 12      18 19 20  

Figure 2.3 Copy genes of Parent 1 
 

Position 1 2 3 4 5 6 7 8 9 10  
Offspring 11 12 16 14 17 13 15 18 19 20  

Figure 2.4 Copy other genes to offspring. 
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The PMX process is as follows： 
 
Step 1: Select two parents P1 and P2 randomly from population. 
Step 2: Generate two crossover points cp1 and cp2 randomly. Then, exchange two 

substrings, which defined by two positions, between parents P1 (4, 5, 6, 7 
in Figure 2) and P2 (2, 8, 3, 4 in Figure 2) to product C1 and C2. 

Step 3: Exchange the genes which are already in the substring from the parent P2 
and P1, for example the second gene of C1: 2->4->7. 

 

         1cp               2cp  

 
 
 
 
 

 
Figure 2.5 PMX process 

 
2.6 Mutation 

The purpose of mutation like crossover is to do a variation on the current 
chromosome. The same with the crossover stage, we also employ the multiple 
mutation strategy. The mutation strategies include swap mutation, and shift mutation. 
They are described below.  
 

The swap mutation is very easy to implement because it just has to set two 
positions and exchange the two values of its position. The result is shown in the figure 
2.6. 

 

6

2 9 5 3 4 8 0 6

2 0 5 3 4 8 9

Swap point 1

7 1

7 1

Before

After

Swap point 2

 
Figure 2.6 the swap mutation 

 

As for the shift mutation, it needs to randomly generate two cut points. We may 
call it cut point 1 and cut point 2. We move the cut point 2 ahead the position of the 

1P  ： 1 2 3 4 5 6 7 8 9 10 

2P  ： 7 1 6 2 8 3 4 9 10 5 
            

1C  ： 1 7 6 2 8 3 4 5 9 10 

2C  ： 2 1 3 4 5 6 7 9 10 8 
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range so that it replaces the original cut point 1. Then, shifting all point forward for 
one space until at the end of element on cut point 2. (Because it has been moved to the 
place of cut point 1) Thus, the shift mutation is done. The figure 2.7 shows how the 
shift mutation works which supposes there are 10 departments. 

 

6

2 9 5 3 4 8 0 6Before

2 0 9 5 3 4 8After

Cut point 1 Cut point 2

7 1

7 1
 

Figure 2.7 Shift mutation 
 
2.7 Replacement and Stopping Criterion 

The replacement strategy is total replacement for the QAP problem. For example, 
if the original population size is µ  and the offspring is λ , then the offspring λ  
will replace µ  of original population. Finally, the stopping criterion of the algorithm 

is depended on the number of generations. 
 
2.8 General Procedure of Genetic Algorithm 

Because the GA platform developed by the work is not only able to implement 
simple GA but also extended to several purposes. First, the elitism strategy is 
employed in the selection stage, we copy a elite individuals into the mating pool. 
Besides, the concept of multiple crossover and multiple mutation operator are used 
here. Therefore, the pseudo code are presented as follows. 
 
1. Initialize() 
2. Fitness() 
3. counter ß 0 
4. while counter < Iteration1 do 
5.    for i = 1 to ns do 
6.       FindPareto() 
7.       Fitness() 
8.       Elitism() 
9.       Selection() 
10.       Crossover() //the secondary crossover operator may be implemented      
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11.       Mutation() //the secondary mutation operator may be implemented      
12.       Replacement() 
13.   end for 
14.    counter ß counter + 1 
15. end while 
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3.  Solving the Continuous Problem 

 The process of GA includes initialization, fitness function, selection, crossover, 
mutation, population maintenance, and stop rule. By the way, we try two different 
kinds of GA to do the experiment. The first one is called simple GA. The second is 
named the modified GA, whose structure is the same in section 2. Moreover, the 
encode type of the modified GA is encoded in real code. Therefore, there are some 
different places when we do the crossover and mutation process between the simple 
GA and modified GA. We will introduce these procedures as follows. 
 
3.1 Initialization 

We encode this problem as bit string. To Start with, we generate the initial 
population randomly. Because this is a continuous problem, we should do precision of 

bit encoding: 
12 −

−
l

ba  

Where 
 

a : upper bound 
b : lower bound 
l : chromosome length 
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−

=
− ××

−
−

+
1

0

2
12

l

j

j
jll

s
ba

b   

where ( )lssx K,1=  

 
3.2 Fitness Function 

The fitness function in GA is a measure of goodness of a chromosome (solution) 
to the objective function. The fitness function of an individual chromosome is directly 
equal to its objective function value as follows: 

Min ( ) ( ) ( )[ ]2
2

2
1

22
21

2
2

2
1 231.07)11( −+−×+−++−+= xxxxxxz  

1x : The first dimension 

2x : The second dimension 

 
3.3 Selection 

During selection phase, parent solutions are selected from the current population. 
The selecting method we use is binary tournament method. It is a simple way because 
it just selects two different parents randomly and compares their fitness value. So the 
better chromosome is selected into the mating pool. 
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3.4 Crossover 
In this phase, there exists some differences. In simple GA, we chose the single 

point crossover method. The method works as follows: 
 
Step 1: Select two parents P1 and P2 randomly from population. 
Step 2: Generate one crossover point cp1 randomly. Then, exchange two 

substrings, which defined by two positions, between parents P1 (1, 1, 1)   
and P2 (1, 0, 0) to product C1 and C2. 

 

         1cp                

 
 
 
 
 

 
Figure3.1 example of single point crossover 

 
However, in the modified GA, we use arithmetic crossover method and 

intermediate crossover method because its encoding is in real code. The arithmetic 
crossover method works as follows: 
 

Step 1: Select two parents P1 and P2 randomly from population. 
Step 2: Set a α  value. The offspring X’ will be ( ) 21 1 XX ×−+× αα . Shown as 

the below figure. 
 

                          Assume α =0.5               

 
 
 
 
 

                                       325.045.0 =×+×  
Figure3.2 An example of arithmetic crossover 

 
The intermediate crossover method works as follows: 

 
Step 1: Select two parents P1 and P2 randomly from population. 
Step 2: The offspring X’ will be ( )121 XXuX −×+ .  u∈U [0, 1] Shown as the 

below figure. 

1P  ： 1 0 1 1 1 1 

2P  ： 0 1 1 1 0 0 
        

1C  ： 1 0 1 1 0 0 

2C  ： 0 1 1 1 1 1 

1P  ： 1 2 3 4 5 6 

2P  ： 5 1 3 2 6 4 
        

1C  ：    3   
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                          Assume u=0.5               

 
 
 
 
 

                                       ( ) 3425.04 =−+  

Figure3.3 example of intermediate crossover 
 
3.5 Mutation 

In this phase, there still exists some difference. In simple GA, we used bit flip 
method. The method works as follows. Generate a random number between 1 and N 
(gene numbers). For example, if we produce the random number i, change the ith 
allele. Also we can say the original value 1 will change to 0.The original value 0 will 
change to 1. 
 
                                   Assume random number is 3          
 
 
 
 

Figure3.4 Example of bit flip 
 

However, in the modified GA, the mutation strategy of real coding for 
continuous problem uses moving current solution up or down that is depending on 
random probability. If U(0,1) is larger than 0.5, the current value moves up; otherwise, 
moves down. The moving length is depended on the range from current position to 
boundary. The equation of the mutation strategy below: 
 





×−+=
×−+=

)1,0()(
)1,0()(

UlwBoundsxxx
UxupBoundxx

iiii

iiii  
otherwise

if
 

5.0)1,0( >U
 

 
Hence, if the original xi is –2.4 and there is a random value U(0,1) = 0.6 for 

judging the value to go up or go down, the value moves up. Besides, the other random 
value U(0,1) = 0.1, the xi -2.4 + (6 – (-2.4))*0.1 = -1.56.  
 
3.6 Population Maintenance 

During population maintenance phase, we use two evolutionary strategies to do 
the experiment. One is comma strategy. It generates 300 offspring from 300 parents 

1P  ： 1 2 3 4 5 6 

2P  ： 5 1 3 2 6 4 
        

1C  ：    3   

1C  ： 1 0 1 0 1 0 1 
'
1C  ： 1 0 0 0 1 0 1 



 13 

and replaces all parents. The other one is plus strategy. It generates 300 offspring from 
300 parents and selects the 300 best individuals from the 600 individuals. 
 
3.7 Stop Rule 

When maximum number of generations is reached, this experiment will stop. 
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4. An Object-Oriented Component Design 

4.1 Introduction of the Component and Its Interfaces 
The second goal of the study is to provide a well-designed callable component to 

implement GA, which is named OpenGA. OpenGA defines some general interfaces 
for each procedure of GA and is able to solve different kinds of problems, including 
the combinatorial problem and continuous problem. Moreover, it not only supports 
the multiple-objective problem but also the single objective problem. Based on the 
development platform, the SPGA is implemented by OpenGA. The following table 
shows these procedures’ corresponding interfaces.  
 

Table 4.1 the purposes and its corresponding interfaces 

Purposes Interface 

Control the main procedures of GA MainI 

Select better individual into the mating pool SelectI 
Crossover CrossoverI 
Mutation MutationI 

Evaluation of objective functions ObjectiveFunctionI 
To calculate the fitness of each chromosome FitnessI 

A solution class to store chromosome and forms a 
population 

populationI 

 
Take the MainI for example, it is an interface which defines the behavior of main 

procedures, such as starting GA, initializing a population, selection, mating, mutation, 
calculating objective values, assigning fitness, and so on. Furthermore, the OpenGA 
provides interfaces to accept auxiliary crossover and mutation operators. Both of them 
can be integrated into the standard procedure of crossover and mutation. The multiple 
crossover and mutation operator may benefit the solution diversity. Then, if we want 
to add others method, we can simply add it to the additional method. The figure 4 
shows the structure of MainI which is presented by UML diagram. It also describes 
the there are two classes, SingleThreadGA, implement the Main. Moreover, there are 
some applications will call the interface, such as flow shop, Himmelblau, 
parallelMachine, QAP_NVR and singleMachine problem.  The Himmelblau is a 
single objective continuous function. Therefore, the OpenGA is applicable to solve 
different kinds of problems.  
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Figure 4.1 the main program of OpenGA 
 
4.2 Classes of the Component 

Although the interfaces define the expected behavior of the object, it can’t do 
anything because there is no code in the interface. However, the class programs will 
implement these interfaces and execute specific actions. The table 2 points out the 
purposes of different classes and the interfaces that they implement. 
 

Table 4.2 the classes in OpenSA 

Purpose Class name Implements the interface 

The main 
procedures of GA 
when solving the 

combinatorial 
problem 

SingleThreadGA 
SingleThreadGAwithMultiple- 

CrossoverAndMutation 
FixWeightScalarization 

SPGAwithSharedParetoSet 

MainI 

Select better 
individual into the 

mating pool 

binaryTournament 
rouletteWheel 

trinaryTournament 
varySizeTournament 

SelectI 

Crossover twoPointCrossover2 
PMX 

ArithmeticCrossover 
intermediateCrossover 

CrossoverI 
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InverseMutation 
ShiftMutation 
swapMutation 

MutationI Mutation 

realValueMutation RealMoveI 
ObjectiveFunctionContinuous 

 
 

ObjectiveFunctionI Evaluation of 
objective functions 

ObjectiveMakeSpan 
ObjectiveTardiness 

ObjectiveTardinessForFlowShop 

ObjectiveFunctionScheduleI 

To calculate the 
fitness of each 
chromosome 

GoldbergFitnessAssignment 
FitnessByScalarizedM_objectives 

singleObjectiveFitness 

FitnessI 

A solution class to 
store chromosome 

and forms a 
population 

population populationI 

 
Take the singleThreadGA for instance, the class implements the solution MainI, so the 
methods (setData, setSecondaryCrossoverOperator, setSecondaryMutationOperator, 
startGA,… ) defined by MainI are all implemented at singleThreadGA. The figure 5 
shows the UML diagram of singleThreadGA. 
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Figure 4.2 The UML diagram of Main procedure of GA 
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5. Experiment Result 

The experimental result includes the QAP problem of Nug30 and the continuous 
problem of Himmelblau function. The changing of crossover rate, changing mutation 
rate, and changing the random number seed are considered in both cases. Moreover, 
the work uses some statistical skills to analyze the experiment result.  

 
The working environment is as follows: 

OS Microsoft Windows XP Professional Service Pack 1 

CPU Intel Pentium 4, 2.8 GHz 

RAM 1024 MB  (DDR SDRAM) 

Coded by MATLAB 7.0 & JAVA (We compile the Java program into 
the native binary code. It’s done by a Java JITs compiler.) 

 
From above description, there are three main factors. To simplicity, they are 

named as follows: 
 
X: The effect from changing crossover rate whose treatments are 3 
Y: The effect from changing mutation rate whose treatments are 3 
Z: The effect from changing random seed whose treatments are 10 
 

Hence, the Statistics model can be represented as following: 
T = X + Y + X Y + Z + X Z + Y Z  
 
Where 
 
T: The objective value for QAP or Himmelblau function 
 

From the Statistics model shows we consider the interaction between two factors. 
However, since the probability of interaction among the three factors is rare, it is not 
taken into consideration.  
 
 
5.1 QAP Experimental Result 

Before the experiment begins, we have some parameters settings as follows: 
Ø Generation = 1000 
Ø Initial population size = 500 
Ø Population size = 300 
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Ø Crossover rate = {1, 0.8, 0.6} 
Ø Mutation rate  = {0.05, 0.2, 0.4} 
Ø Random number seed = 500~509 
 
The experiment result of QAP shows at the table 5.1 which has 90 combinations. 
 

Table 5.1 the experimental result of QAP experiment 

Counter Seed Crossover Rate Mutation Rate Obj Value Time 

0 500 1 0.05 3188 18.86 

1 500 1 0.2 3138 18.172 

2 500 1 0.4 3198 18.547 

3 500 0.8 0.05 3140 17.469 

4 500 0.8 0.2 3134 17.656 

5 500 0.8 0.4 3163 17.703 

6 500 0.6 0.05 3138 16.938 

7 500 0.6 0.2 3141 16.985 

8 500 0.6 0.4 3143 17.625 

9 501 1 0.05 3149 18.187 

10 501 1 0.2 3291 17.938 

11 501 1 0.4 3192 18.359 

12 501 0.8 0.05 3197 17.437 

13 501 0.8 0.2 3120 17.359 

14 501 0.8 0.4 3192 17.719 

15 501 0.6 0.05 3190 16.89 

16 501 0.6 0.2 3257 17.032 

17 501 0.6 0.4 3191 17.234 

18 502 1 0.05 3227 17.922 

19 502 1 0.2 3115 18.109 

20 502 1 0.4 3224 18.766 

21 502 0.8 0.05 3188 17.531 

22 502 0.8 0.2 3210 17.484 

23 502 0.8 0.4 3163 17.937 

24 502 0.6 0.05 3142 16.985 

25 502 0.6 0.2 3128 16.656 

26 502 0.6 0.4 3202 17.172 

27 503 1 0.05 3157 17.422 

28 503 1 0.2 3196 17.813 

29 503 1 0.4 3246 17.828 
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30 503 0.8 0.05 3273 17.047 

Counter Seed Crossover Rate Mutation Rate Obj Value Time 

31 503 0.8 0.2 3129 17.343 

32 503 0.8 0.4 3198 17.454 

33 503 0.6 0.05 3174 16.531 

34 503 0.6 0.2 3194 16.735 

35 503 0.6 0.4 3165 16.89 

36 504 1 0.05 3250 17.579 

37 504 1 0.2 3104 17.781 

38 504 1 0.4 3212 18.172 

39 504 0.8 0.05 3170 17.719 

40 504 0.8 0.2 3215 17.703 

41 504 0.8 0.4 3141 17.938 

42 504 0.6 0.05 3166 17.047 

43 504 0.6 0.2 3127 17.093 

44 504 0.6 0.4 3221 17.266 

45 505 1 0.05 3158 18.25 

46 505 1 0.2 3123 18.296 

47 505 1 0.4 3189 18.703 

48 505 0.8 0.05 3167 17.563 

49 505 0.8 0.2 3190 17.765 

50 505 0.8 0.4 3159 17.782 

51 505 0.6 0.05 3137 17.297 

52 505 0.6 0.2 3143 17.078 

53 505 0.6 0.4 3148 17.641 

54 506 1 0.05 3203 18.562 

55 506 1 0.2 3152 18.328 

56 506 1 0.4 3221 18.703 

57 506 0.8 0.05 3168 17.672 

58 506 0.8 0.2 3116 17.922 

59 506 0.8 0.4 3135 18 

60 506 0.6 0.05 3162 17.203 

61 506 0.6 0.2 3195 17.11 

62 506 0.6 0.4 3175 17.39 

63 507 1 0.05 3213 18.219 

64 507 1 0.2 3263 18.406 

65 507 1 0.4 3205 18.782 

66 507 0.8 0.05 3199 17.687 
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67 507 0.8 0.2 3188 17.984 

Counter Seed Crossover Rate Mutation Rate Obj Value Time 

68 507 0.8 0.4 3192 18.188 

69 507 0.6 0.05 3141 17.093 

70 507 0.6 0.2 3162 17.219 

71 507 0.6 0.4 3177 17.718 

72 508 1 0.05 3226 18.234 

73 508 1 0.2 3142 18.5 

74 508 1 0.4 3208 18.563 

75 508 0.8 0.05 3147 17.75 

76 508 0.8 0.2 3155 17.656 

77 508 0.8 0.4 3143 18.156 

78 508 0.6 0.05 3254 17.547 

79 508 0.6 0.2 3117 17.391 

80 508 0.6 0.4 3177 17.484 

81 509 1 0.05 3222 18.031 

82 509 1 0.2 3124 18.281 

83 509 1 0.4 3166 18.609 

84 509 0.8 0.05 3147 17.688 

85 509 0.8 0.2 3199 18 

86 509 0.8 0.4 3227 18.203 

87 509 0.6 0.05 3147 17.109 

88 509 0.6 0.2 3144 17.422 

89 509 0.6 0.4 3144 17.5 

 
First, we observe every individual value by the scatter plot. 
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Figure 5.1 scatter plots of QAP 
 

 From above figure, we can get some information: 
Ø In random seed scatter plot, we cannot find any rule from it. In other words, 

it seems different seeds don’t influence obj value. 
Ø In mutation rate scatter plot, we can find when mutation rate = 0.2, dots 

spread more widely. On the other hand, dots are highly concentrated when 
mutation rate =0.4. In view of average obj value, it seems no difference 
among the three mutation levels we set. 

Ø In crossover rate scatter plot, we can find when crossover rate = 1, dots 
spread more widely. In view of average obj value, it still seems no 
difference among the three crossover levels we set. 
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From above ANOVA result, we find that all p-value are larger than 0.05. In 
another word, we can’t find any factor that can cause significant difference. 
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Figure 5.2 Main effects plot of QAP 
 

Figure 5.2 shows when we apply the mutation rate = 0.2 and crossover rate 
= 100, it may be able to find better solution than others treatments. 
 

According to above analysis, the random seed is deleted in order to estimate 

Analysis of Variance for objValue 

 

Source                      DF      SS    MS     F      P 

seed                         9   17973  1997  1.05  0.424 

crossoverRate                2    8944  4472  2.34  0.110 

mutationRate                 2    7230  3615  1.89  0.165 

seed*crossoverRate          18   18713  1040  0.54  0.915 

seed*mutationRate           18   16740   930  0.49  0.947 

crossoverRate*mutationRate   4    4519  1130  0.59  0.670 

Error                       36   68684  1908 

Total                       89  142804 
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the variance from other two factors more precisely. The revised statistics result is 
as follows. 
 
 
 
 
 
 
 
 
 
 

From above ANOVA result, we also find that all p-value are larger than 0.05. 
In another word, the experiment model still not causes any significant difference. 
 

Here, we conduct the other experiment in order to know the effect of elitism 
and number of generations. The parameters setting is as follows: 
Ø Generation = {400, 700, 1000} 
Ø Population size = 300 
Ø Elitism= {0.05, 0.1, 0.2, 0.3} 
Ø Crossover rate = 0.6 
Ø Mutation rate  = 0.2 
Ø Random number seed  = 0~9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From above ANOVA result, we find that all p-value are larger than 0.05. In 

Analysis of Variance for objValue 

 

Source                      DF      SS    MS     F      P 

crossoverRate                2    8944  4472  2.97  0.057 

mutationRate                 2    7230  3615  2.40  0.097 

crossoverRate*mutationRate   4    4519  1130  0.75  0.561 

Error                       81  122110  1508 

Total                       89  142804 

 

Analysis of Variance for objValue 

 

Source                DF      SS    MS     F      P 

elitism                3    5933  1978  1.37  0.261 

generations            2     704   352  0.24  0.784 

seed                   9    5019   558  0.39  0.936 

elitism*seed          27   43847  1624  1.13  0.345 

generations*seed      18   31255  1736  1.21  0.290 

elitism*generations    6    5772   962  0.67  0.676 

Error                 54   77753  1440 

Total                119  170283 
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another word, we can’t find any factor that can cause significant difference. 
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Figure 5.3 New experiment main effects plot of QAP 
 

Figure 5.3 shows when we apply the elitism = 0.2 and generations = 1000, it may 
be able to find better solution than others treatments. 

From above analysis, we still try to ignore the influence of random seed. 
The result is as follows. 
 
 
 
 
 
 
 
 
 
 
 

From above ANOVA result, we also find that all p-value are larger than 0.05. 
In another word, we can’t find any factor that can cause significant difference. 

From here, we turn to focus on the relationship between time and the three 
factors. 

Analysis of Variance for objValue 

 

Source                DF      SS    MS     F      P 

elitism                3    5933  1978  1.35  0.261 

generations            2     704   352  0.24  0.786 

elitism*generations    6    5772   962  0.66  0.684 

Error                108  157874  1462 

Total                119  170283 
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The ANOVA tells us only the p-value of generation*seed greater than 0.05.In 
other words, all factors except generation*seed cause significant difference. 
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Figure 5.4 New experiments for time main effects plot of QAP 
 
Figure 5.4 shows when we apply the elitism = 0.05 and generations = 400, it may 

Analysis of Variance for time 

 

Source                DF        SS        MS         F      P 

elitism                3   368.460   122.820   1979.08  0.000 

generations            2  2739.830  1369.915  22074.36  0.000 

elitism*generations    6    44.116     7.353    118.48  0.000 

seed                   9    18.015     2.002     32.26  0.000 

elitism*seed          27     5.243     0.194      3.13  0.000 

generations*seed      18     1.919     0.107      1.72  0.065 

Error                 54     3.351     0.062 

Total                119  3180.934 
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be able to find solution effectively than others treatments. 
 
5.2 Continuous Problem Result 
Before the experiment begins, we have some parameters settings as fo llows: 
Ø Generation = 500 
Ø Initial population size = 500 
Ø Population size = 300 
Ø Crossover rate = {1, 0.8, 0.6} 
Ø Mutation rate  = {0.05, 0.2, 0.4} 
Ø Random number seed                = 500~519 
 
After the experiment, we find both simple GA and the modified GA have obj 
value =0. Thus, we just list the modified GA experiment result of continuous 
problem shows at the table 5.2 which has 90 combinations. You can see the 
simple GA experiment result of continuous problem in appendix I.  
 

Table 5.2 the experimental result of continuous problem experiment 

counter seed Crossover Mutation X1 X2 Obj Value Time(sec) 

0 500 1 0.05 2.999999097 2.000002356 0.000000 3.016 

1 500 1 0.2 2.999998792 2.000004245 0.000000 2.89 

2 500 1 0.4 2.999999748 1.999998908 0.000000 2.875 

3 500 0.8 0.05 2.999999972 1.999999408 0.000000 2.891 

4 500 0.8 0.2 2.999999978 2.00000005 0.000000 2.938 

5 500 0.8 0.4 3.000000013 1.999999973 0.000000 2.875 

6 500 0.6 0.05 3 2 0.000000 2.75 

7 500 0.6 0.2 3 2 0.000000 2.968 

8 500 0.6 0.4 3 2 0.000000 2.875 

9 501 1 0.05 2.999999059 1.999998786 0.000000 2.891 

10 501 1 0.2 2.999998344 2.00001578 0.000000 3.016 

11 501 1 0.4 2.999997849 2.000000846 0.000000 2.968 

12 501 0.8 0.05 3.000000067 1.999999941 0.000000 2.953 

13 501 0.8 0.2 2.99999998 1.999999882 0.000000 2.907 

14 501 0.8 0.4 3.000000119 1.999999731 0.000000 2.922 

15 501 0.6 0.05 3 2 0.000000 3.39 

16 501 0.6 0.2 3 2 0.000000 3.188 

17 501 0.6 0.4 3 2 0.000000 3.125 

18 502 1 0.05 2.999999929 1.999996283 0.000000 2.937 

19 502 1 0.2 3.000000211 2.000000633 0.000000 2.985 
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20 502 1 0.4 2.999995482 2.000004467 0.000000 2.953 

21 502 0.8 0.05 2.999999955 1.999999896 0.000000 2.937 

counter seed Crossover Mutation X1 X2 Obj Value Time(sec) 

22 502 0.8 0.2 3.000000009 1.999999999 0.000000 2.906 

23 502 0.8 0.4 3.000000059 1.999999933 0.000000 2.985 

24 502 0.6 0.05 3 2 0.000000 2.922 

25 502 0.6 0.2 3 2 0.000000 2.859 

26 502 0.6 0.4 3 2 0.000000 2.859 

27 503 1 0.05 2.999999066 1.999997377 0.000000 2.985 

28 503 1 0.2 3.000001852 1.999996783 0.000000 3.031 

29 503 1 0.4 2.999998408 2.000000158 0.000000 3.062 

30 503 0.8 0.05 2.999999997 2.00000001 0.000000 2.922 

31 503 0.8 0.2 2.999999998 2.000000018 0.000000 3.016 

32 503 0.8 0.4 2.999999996 2.000000003 0.000000 3.218 

33 503 0.6 0.05 3 2 0.000000 3.063 

34 503 0.6 0.2 3 2 0.000000 3.062 

35 503 0.6 0.4 3 2 0.000000 3.172 

36 504 1 0.05 3.000002028 1.999996789 0.000000 3.235 

37 504 1 0.2 3.000000076 2.000001914 0.000000 3.109 

38 504 1 0.4 2.999999826 2.000000886 0.000000 3.297 

39 504 0.8 0.05 2.999999897 1.999999834 0.000000 3.14 

40 504 0.8 0.2 3.000000019 1.99999997 0.000000 3.235 

41 504 0.8 0.4 3.000000006 2.000000011 0.000000 3.015 

42 504 0.6 0.05 3 2 0.000000 3.063 

43 504 0.6 0.2 3 2 0.000000 3.078 

44 504 0.6 0.4 3 2 0.000000 3.25 

45 505 1 0.05 2.999999418 2.000000835 0.000000 3.14 

46 505 1 0.2 2.999999397 1.999997856 0.000000 3.109 

47 505 1 0.4 3.000002124 1.99999787 0.000000 3.297 

48 505 0.8 0.05 2.999999818 2.000000067 0.000000 3.078 

49 505 0.8 0.2 2.999999953 2.00000006 0.000000 3.125 

50 505 0.8 0.4 2.999999989 1.999999927 0.000000 3.204 

51 505 0.6 0.05 3 2 0.000000 3.062 

52 505 0.6 0.2 3 2 0.000000 3.14 

53 505 0.6 0.4 3 2 0.000000 3.016 

54 506 1 0.05 3.000000553 2.000000757 0.000000 3.344 

55 506 1 0.2 3.000003807 1.999999333 0.000000 3.125 

56 506 1 0.4 2.999998152 2.000003556 0.000000 3.203 
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57 506 0.8 0.05 2.999999989 1.999999677 0.000000 3.094 

58 506 0.8 0.2 2.999999984 2.000000016 0.000000 3.203 

counter seed Crossover Mutation X1 X2 Obj Value Time(sec) 

59 506 0.8 0.4 3.000000036 1.999999892 0.000000 3.11 

60 506 0.6 0.05 3 2 0.000000 3.109 

61 506 0.6 0.2 2.999999999 2 0.000000 3.109 

62 506 0.6 0.4 3 2 0.000000 3.359 

63 507 1 0.05 2.999998408 1.999993363 0.000000 3.172 

64 507 1 0.2 3.000002072 1.999995053 0.000000 3.422 

65 507 1 0.4 3.000001251 1.99999925 0.000000 3.453 

66 507 0.8 0.05 3.00000001 2.000000016 0.000000 3.281 

67 507 0.8 0.2 2.999999997 1.999999985 0.000000 3.125 

68 507 0.8 0.4 2.999999983 2.000000037 0.000000 3.141 

69 507 0.6 0.05 3 2 0.000000 3.031 

70 507 0.6 0.2 3 2 0.000000 3.328 

71 507 0.6 0.4 3 2 0.000000 3.781 

72 508 1 0.05 2.999999218 1.999999496 0.000000 3.281 

73 508 1 0.2 2.999997909 1.999992512 0.000000 3.219 

74 508 1 0.4 3.000000113 1.999997368 0.000000 3.11 

75 508 0.8 0.05 2.999999934 2.000000014 0.000000 3.156 

76 508 0.8 0.2 3.000000021 1.999999866 0.000000 3.109 

77 508 0.8 0.4 2.999999895 1.999999955 0.000000 3.188 

78 508 0.6 0.05 3 2 0.000000 3.125 

79 508 0.6 0.2 3 2 0.000000 3.015 

80 508 0.6 0.4 3 2 0.000000 3.094 

81 509 1 0.05 3.000000294 2.000001952 0.000000 3.11 

82 509 1 0.2 2.999996894 2.000005954 0.000000 3.265 

83 509 1 0.4 2.999999771 2.000000561 0.000000 3.156 

84 509 0.8 0.05 2.999999997 2.000000052 0.000000 3.094 

85 509 0.8 0.2 2.999999959 1.999999757 0.000000 3.203 

86 509 0.8 0.4 2.999999995 1.999999989 0.000000 3.094 

87 509 0.6 0.05 3 2 0.000000 2.968 

88 509 0.6 0.2 3 2 0.000000 2.907 

89 509 0.6 0.4 3 2 0.000000 2.875 
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Figure 5.5 scatter plots of continuous problem 
 

We observe every individual value by the scatter plot and obtain some 
information: 
Ø No matter seed scatter plot, crossover rate scatter plot or mutation rate 

scatter plot, we can see the obj value all = 0 in each treatment. In other 
words, we cannot find any factor that can cause significant difference. 
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6. Discussion and Conclusions 

The study does two experiments in combinatorial problem and continuous 
problem. Besides, in order to obtain better solution quality, there are some procedures, 
elitism and multiple crossover operators and multiple mutation operators, which are 
added in the GA process. The elitism is to copy better chromosomes in the external 
archive and let these individuals to join the mating procedure. The purpose of 
employing the multiple crossover operators and multiple mutation operators is to do 
more variation on each chromosome. The effort will increase the diversity of the 
chromosomes. 
 

From the first experiments of QAP, the study found GA might not be sensitive to 
parameters, such as crossover rate and mutation rate, which don’t cause significant 
difference. However, after we eliminate the factor of random number seed, the 
P-value of crossover rate and mutation rate become 0.057 and 0.097 respectively. (In 
statistics point of view, the factor doesn’t cause significant can be ignored.) If we set 
the α  = 0.05, both of them are still not significant but they close to cause the 
significant difference. Hence, according to the revised ANOVA table, we suggest that 
to use the crossover rate is 0.6 and the mutation rate is 0.2. It may accordance to some 
researches’ finding about “to apply the higher crossover rate with lower mutation rate 
or lower crossover rate with higher mutation rate.”  
 

The study further examines the effect of elitism and generations in the QAP 
problem. Besides, the objective value and implementation are considered in the 
statistic model. As for the number of elite, we can’t explain how many elites are 
required during selection. It may need further experiment to know the truth. However, 
the time is significant when applying different proportion elite. The larger elite size, it 
causes the higher computational time. According the finding, we may not select too 
many elites in the external archive. 
 

Then, although the generation 1000 is slightly better than 400 and 700 
generations in average, the longer generation causes more time to calculate the 
solutions in generations. It is not necessary to run 1000 generation. So the work 
suggest that we can use 400 generation to solve the problem size which is 30 because 
400 generations is as good as 1000 generations and it’s enough to obtain satisfactory 
solution quality.  
 

The study compares the simple GA and the modified genetic algorithm in 
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continuous problem, which shows the simple GA is as good as modified GA. The 
reason may be the problem that is easy to solve, the more complex approach can’t 
present its effort clearly. Consequently, to test one testing function is not always  
enough, the later study should test different kind of functions to clarify the effect of 
modified GA in continuous problem. 
 

Finally, the work designs and develops a component which is called OpenGA. It 
has been proved that it’s able to solve the combinatorial problem and continuous 
problem and both of them are single objective problem. Then, the ability of the 
OpenGA can be extended to solve the multiple objectives problem. Because the 
applications had been developed to solve scheduling problem, they may be shown in 
the final term project. 

 


