

Department of Industrial Engineering and Management,

Yuan-Ze University, Taiwan, R.O.C.

The Production Scheduling and Soft-Computing Lab

The Simulated Annealing for Solving the
Quadratic Assignment Problem and

Continuous Problem

2005/4/6

1. Introduction

The work solves the quadratic assignment problem (QAP) and continuous problem by
simulated annealing (SA). Besides, it also applies some features of Genetic algorithm
(GA), including the encoding scheme, selection method, and mutation operator. Thus,
it is a GA-Like SA. Then, we also introduce some techniques to improve the solution
quality. Finally, the paper designs a called component, which is named OpenSA, to
solve different kinds of problems. The work is organized as following.

The section 2 and section 3 describe how to solve QAP and continuous problem by
SA respectively. Then, the study tries some techniques, such as reheating and restore
solution, to enhance the solution quality of SA in section 4. Depending on above
infrastructure, the study composes an object-oriented component that is written in
Java and it’s presented in section 5. The goal of designing the component is to reduce
the complexity and easy to use when we solve different kinds of problem. Section 6 is
the experimental result of the two cases and the section 6 is the discussion and
conclusions.

2. Solving the QAP

No matter for solving the combinatorial problem or continuous problem, the main
procedures of SA can be distinguished into generating an initial solution, moves,
evaluating the new solution(s), accepting rules, and repeated iteration. The following
sub-sections describe them in detail.

2.1 Generate an Initial Solution
Before generating an initial solution, we should determine how to encode the problem.
As for the QAP, which is one of the combinatorial optimization problem, the
sequential encoding or path representation type like {1, 2, 3… } is employed here. If
the problem is the continuous problem, it may be encoded into the type of real number
or binary form like binary {0,1}. Because the later part of the study aims at the
continuous problem, they are discussed later. After we decide the technique to encode
the problem, the work randomly generates an initial solution for the problem which
assigns each department at exactly one dimension.

In order to make the explanation more clear, the work illustrates an example by the
Nug30. There are 30 departments, whose number are 0, 1, 2, … , and 29. Then, the
locations of these 30 departments are known in advance. Besides, the flow quantity
between two departments is also given. The figure 2.1 presents the encoding of QAP
for the 30 departments.

14 5 28 24 … . 12 11 23

Figure 2.1 The problem representation of the QAP for 30 departments

 From the figure, it implies the department 14 at the first position, department 5 at the
second position, and so on. Thus, the initial solution is done after we deal with the
encoding and to generate initial solution.

2.2 Moves Strategy
The purpose of move is to do a variation on current solution by local search. The
move strategies include swap move, 2-opt, 3-opt, k-opt, shift move, and inverse move.
The swap move is to swap two points of original path and the 2-opt is to replace
original two arcs, which are not nearby and then connect two new arcs into the path.
The work applies the swap move, shift move, and inverse move together. They are
described below.

No matter for the shift move or inverse move, it needs to randomly generate two cut
points. We may call it cut point 1 and cut point 2. For shift move, we move the cut
point 2 ahead the position of the range so that it replaces the original cut point 1. Then,
shifting all point forward for one space until at the end of element on cut point 2.
(Because it has been moved to the place of cut point 1) Thus, the shift move is done.
The figure 2.2 shows how the shift move works which supposes there are 10
departments.

The inverse move is to inverse the current position. Take figure 2.3 for instance, the
original sequence between the two cut points is 9-5-3-4-8-0. After the inverse, the
new sequence becomes 0-8-4-3-9-5.

6

2 9 5 3 4 8 0 6Before

2 0 9 5 3 4 8After

Cut point 1 Cut point 2

7 1

7 1

Figure 2.2 Shift move

6

2 9 5 3 4 8 0 6

2 0 8 4 3 9 5

Cut point 1 Cut point 2

7 1

7 1

Before

After

Figure 2.3 Inverse move

Finally, the swap move is very easy to implement because it just has to set two
positions and exchange the two values of its position. The result is shown in the figure
2.3.

6

2 9 5 3 4 8 0 6

2 0 5 3 4 8 9

Swap point 1

7 1

7 1

Before

After

Swap point 2

Figure 2.4 The swap move

2.3 Evaluate the Objective Value
When we do the local search, the solution changes so that we are going to evaluate the
solution. The objective function is

 ijij
1

1

0
Df ×∑∑=

+=

−

=

n

ij

n

i
Z

 ijD : The distance between the location at i and j.

ijf : The flow between the department i and j.

By the objective function, it calculates the summary distance from one department to
the other one by the flow quantity between the two departments. Suppose the new
solution is 14-15-28… -23, the procedure to perform the calculation of the objective
value are:

For department 14: 4*5 + 5*1 + 6*5 + … + 6*5 + 5*0 + 5*1
For department 5 : 4*2 + 5*0 + … + 3*0 + 2*6 + 4*4
For department 28: 4*0 + … + 6*0 + 5*3 + 3*1

 M M
 M M

For department 12: 0*0 + 2*6
For department 11: 3*0
Sum for department 14,5, 28, … , 12, and 11. The objective value is 3062 which is
also the optimal solution.

2.4 Acceptance Rule and Termination
If the neighborhood solution is better than current solution, it goes without saying that
it replaces the current solution. On the other hand, if the neighborhood solution is
worsened, simulated annealing creates a chance to accept this solution depending on
the following condition. The characteristic of SA is different from traditional
heuristics that may discard the neighborhood solution. The following condition will
accept the worse solution when the random probability is less than or equal to the
value of energy function .

'
)()'(

)1,0(T
xfXf

eU
−−

≤
where:

)1,0(U : A random generated value is between 0 and 1.

)(xf ：The current objective value of x.
)'(xf ：The objective value of the neighborhood solution of x’.

'T ：The current temperature.

Then, the neighborhood solution is also compared with current best solution. If it is
better than current optimal solution, SA replaces the current best solution by the
neighborhood solution.

Finally, the termination condition is that when the currentTemperature <
finalTemperature, the SA stops.

2.5 Additional Approaches for QAP
In the study, the standard procedures are slightly revised. For example, we introduce
multiple local search operators that work in the same time and use tournament select
to determine the better move at every move step. Besides, to obtain better solution
quality, the research tries to use some methods, such as reheating and set back to
current best technique, to do so. The following paragraph describes the modification
of standard procedures and makes it become a GA-Like SA.

Because the work applies some techniques of GA, it is called a GA-Like SA. In the
beginning, the solution is treated as a chromosome and each gene value corresponding
to its dimension. Then, we also employ the multiple local search operators, which is a
widely used mutation operator in GA. Furthermore, because the number of local
search operator is more than one, it creates a small population. Since we want to
select better chromosome from the population, it is natural to use the binary
tournament to select better solution generated by different local search operator.

There are two different methods to enhance the solution quality. First of all, we record
the number of non-improved moves. When it is up to a specific level, the algorithm
does the reheating procedure. The following equation shows the operation:

currentTemperature = currentTemperature + initialTemperature/(counter*0.01);

where
currentTemperature: The current temperature
initialTemperature: The initial temperature
counter: The number of temperature changes

By the effort, the temperature is heating up. Then, the meaning of reheating procedure
may mean the current solution is not good enough. Hence, after the reheating
procedure, the algorithm will also set back the current solution to original current best
solution. In other words, the current best solution replaces the current solution and the
algorithm use it to continue the exploration.

2.6 The Main Procedures of the Algorithm
The sub section combines above efforts into one by using the pseudo code. The
following is the variables defined by the study.

initialTemperature: The initial temperature

α : The changing annealing schedule
currentTemperature: The current temperature
finalTemperature: The final temperature and it is used as the termination criterion
numberOfMoves: The number of local search within the same temperature
chromosome1: The solution class to store current solution and corresponding
objective values
tempChromosomes[]: It’s also the solution class which store temporarily solution by
different kinds of moves
best: The best solution
counter: The number of currentTemperature is changed

Main()://the main procedures of SA for QAP problem
1. initialParameters()
2. initialStage();
3. while counter < numberOfSolutionsExamined do
4. for i = 0 to numberOfMoves do
5. tempChromosomes = getMoves();
6. calcObjectiveValue();
7. tempChromosomes[0] = selectBetterMoves ();
8. acceptanceRule();
9. reheating();
10. End for
11. currentTemperature *= α ;
12. End while

3. Solving the Continuous Problem

The SA procedures of continuous problem is the same when we solve the
combinatorial problem in section 2 which explains the procedures of generating an
initial solution, moves, evaluation of the new solution(s), acceptance rule, and
repeated iteration. Of course, some of them are the same and some are different from
each other. Section 3 pays attention to the differences of the QAP problem. The
different places are generating an initial solution, moves, and evaluation of the new
solution(s). Then, acceptance rule, and repeated iteration are identical with the section
2.4, they won’t be discussed here again.

3.1 Generate an Initial Solution
The method to generate the initial solution is very easy because we only consider that
the solution should locate in the boundary. The study applies the Himmelblau
function as an example. The problem has two dimensions which are named x1 and x2,
and its corresponding boundary are lie between 6± . Thus, both the solution of x1 and
x2 lie between the upper bound and lower bound is valid.
The author uses the following equation to generate each initial solution xi.

xi = lwBoundsi + U(0,1)*(upBoundi - lwBoundsi) i = 1, … n

where
n: it’s the number of dimension

Therefore, if there is a random value U(0,1) = 0.3, then the value xi is –6 + 0.3*(6 – (-
6)) = -2.4. By doing that, the initial stage is done.

3.2 Moves Strategy
The move strategies of continuous problem are not as many as combinatorial problem.
The research considers moving current solution up or down that is depending on
random probability. If U(0,1) is larger than 0.5, the current value moves up; otherwise,
moves down. The moving length is depended on the range from current position to
boundary. The equation of the move strategy below:

×−+=
×−+=

)1,0()(
)1,0()(

UlwBoundsxxx
UxupBoundxx

iiii

iiii
otherwise

if

5.0)1,0(>U

Hence, if the original xi is –2.4 and there is a random value U(0,1) = 0.6 for judging
the value to go up or go down, the value moves up. Besides, the other random value
U(0,1) = 0.1, the xi -2.4 + (6 – (-2.4))*0.1 = -1.56.

3.3 Evaluate the Objective Value
The Himmelblau function is a two dimension problem which shows as following:

Z = 2
2

2
1

2
21

2
2

2
1)2()3(1.0)7()11(−+−×+−++−+ xxxxxx

Suppose the x1 is –1.56 and x2 is 2.6, then the objective value Z = 35.598 + 3.24 +
2.115 = 40.95.

4. An Object-Oriented Component Design

4.1 Introduction of the Component and Its Interfaces
The study does a well-designed callable component, which is named OpenSA. The
OpenSA defines some general interfaces for each procedure of SA. Basically, the
interface looks like a blue print. When the class program implements it, the behaviors
defined by the interface show on the class program that is expected. The following
table shows these procedures’ corresponding interfaces.

Table 4.1 The purposes and its corresponding interfaces
Purposes Interface

Control the main procedures of SA MainI
Move strategy (Local search) MoveI

Evaluation of objective function ObjectiveFunctionI
Select better neighborhood solution from moves SelectI

Take the mainI for example, it is an interface which defines the behavior of main
procedures, such as starting SA, initial stage of SA, moving strategy, calculating
objective values, acceptance rules, and so on. Furthermore, the reheating technique is

also integrated into the framework. Then, if we want to add others method, we can
simply add it to the additional method. The figure 4.1 shows the structure of MainI
which is presented by UML diagram. It also describes the there are two classes,
SingleThreadSA and MainContinuous, implement the Main. Moreover, there are two
applications will call the interface, QAP_NVR and Himmelblau. The MoveI,
ObjectiveFunctionI, and SelectI of UML diagram shows at figure 4.2, 4.3, and 4.4
respectively.

Figure 4.1 The UML diagram of MainI

Figure 4.2 The UML diagram of MoveI

Figure 4.3 The UML diagram of ObjectiveFunctionI

Figure 4.4 The UML diagram of SelectI

Then, in order to fit different kinds of problem, we may extend original interface and
add some functions to the new interface. For example, the study is to solve
combinatorial problem and continuous problem, so the input parameter for the
objective function will be different. As for continuous problem concerned, it just need
the value of each dimension. However, as for the QAP problem concerned, it not only
has to pass the sequence data to the objective and then evaluate the solution, but also
need the flow quantity and the distance between two departments. So different
applications would have different requirements. It’s the reason why it needs to modify
original interface. The figure 4.5 demos the QAPObjectiveFunctionI extends the
original interface ObjectiveFunctionI and adds a method, setQAPData, for the use of
QAP objective function. (You can ignore the cutPoints method since we won’t use it
in the case). Finally, the class QAPObjectiveFunction will implements the
QAPObjectiveFunctionI.

Figure 4.5 The UML diagram of QAPObjectiveFunctionI

4.2 Classes of the Component
Although the interfaces define the expected behavior of the object, it can’t do
anything because there is no code in the interface. However, the class programs will
implement these interfaces and execute specific actions. The table 4.2 points out the
purposes of different classes and the interfaces that they implement.

Table 4.2 The classes in OpenSA
Purpose Class name Implements the interface

The main procedures
of SA when solving the
combinatorial problem

singleThreadSA MainI

The main procedures
of SA when solving the

continuous problem

singleThreadSAforContinuous MainContinuousI and extends
the singleThreadSA

Swap move swapMutation MoveI
Shift move shiftMutation MoveI

Inverse move inverseMutation MoveI
Move for real number RealValueMutation RealMoveI

Evaluate QAP
objective value

ObjectiveFunctionQAP QAPObjectiveFunctionI

Evaluate continuous
objective value

ObjectiveFunctionContinuous ObjectiveFunctionContinuousI

Select better moves binaryTournament SelectI

Take the singleThreadSA for instance, the class implements the solution MainI, so the
methods (startSA, initialStage, moveStrategy…) defined by MainI are all
implemented at singleThreadSA. The figure 4.6 shows the UML diagram of
singleThreadSA.

Figure 4.6 The UML diagram of singleThreadSA

5. Experimental Result
The experimental result includes the QAP problem of Nug30 and the continuous
problem of Himmelblau function on P4 2.8 GHZ. The changing of annealing schedule
(α), changing stopping criterion, changing the initial starting point, and changing the
random number seed are considered in both cases. Moreover, the work uses the
ANOVA to analyze the experiment result.

The number of movements is set to 1500. The α is {0.9, 0.8, 0.7}. The stopping
criterion depends on the finalTemperature, which is {10, 100, 500}. Then, because the
initial solution is generated randomly, it is changed with number of random seed. In
other words, if we change the random seed, the initial solution changed together. The
number of random seed is changed ten times here. (Other random seed produces the
number of random seed).

From above description, there are three main factors. To simplicity, they are named as
follows:

X: The effect from the changing of annealing schedule whose treatments are 3

Y: The effect from the changing stopping criterion whose treatments are 3
Z: The effect from the changing random seed whose treatments are 10

Hence, the Statistics model can be represented as following:

T = X + Y + X Y + Z + X Z + Y Z

Where
T: The objective value for QAP or Himmelblau function

From the Statistics model shows we consider the interaction between two factors.
However, since the probability of interaction among the three factors is rare, it is not
taken into consideration. Finally, the Statistics hypothesis is as following for the three

The section 5.1 show the former one and the latter one experiment result respectively.

5.1 QAP Experimental Result and ANOVA of the Experiment
 The experiment result of QAP shows at the table 5.1 which has 90 combinations.

Table 5.1 The experimental result of QAP experiment

Num α finalTemperature Random seed Time* Obj value (fij*Dij)

1 0.9 10 1578708367 81828 3197

2 0.9 10 1578708367 59562 3269

3 0.9 10 1001241461 38562 3251

4 0.9 10 1119387339 41047 3203

5 0.9 10 814391786 45531 3193

6 0.9 10 152123184 64359 3275

7 0.9 10 912023484 58672 3278

8 0.9 10 251167074 44563 3215

9 0.9 10 703090523 48094 3228

10 0.9 10 399287411 36906 3177

11 0.9 100 1578708367 32156 3224

12 0.9 100 1001241461 50031 3277

13 0.9 100 1119387339 44204 3213

14 0.9 100 814391786 38468 3343

15 0.9 100 152123184 51532 3260

16 0.9 100 912023484 36171 3190

17 0.9 100 251167074 36500 3235

18 0.9 100 703090523 51359 3187

19 0.9 100 733447773 46329 3238

20 0.9 100 399287411 46796 3230

21 0.9 500 1578708367 344 3592

22 0.9 500 1001241461 281 3614

23 0.9 500 1119387339 329 3639

24 0.9 500 814391786 281 3625

25 0.9 500 152123184 297 3573

26 0.9 500 912023484 281 3616

27 0.9 500 251167074 281 3595

28 0.9 500 703090523 313 3584

29 0.9 500 733447773 297 3625

30 0.9 500 399287411 312 3617

31 0.8 10 1578708367 28547 3276

32 0.8 10 1001241461 20031 3290

33 0.8 10 1119387339 24672 3220

34 0.8 10 814391786 22188 3238

35 0.8 10 152123184 26000 3262

36 0.8 10 912023484 26234 3201

37 0.8 10 251167074 17687 3245

38 0.8 10 703090523 28235 3282

39 0.8 10 733447773 31375 3287

40 0.8 10 399287411 27531 3246

41 0.8 100 1578708367 13734 3361

42 0.8 100 1001241461 5922 3467

43 0.8 100 1119387339 9594 3418

44 0.8 100 814391786 9375 3377

45 0.8 100 152123184 6016 3499

46 0.8 100 912023484 8141 3346

47 0.8 100 251167074 922 3585

48 0.8 100 703090523 16141 3357

49 0.8 100 733447773 5375 3510

50 0.8 100 399287411 4406 3532

51 0.8 500 1578708367 188 3657

52 0.8 500 1001241461 156 3541

53 0.8 500 1119387339 187 3681

54 0.8 500 814391786 172 3588

55 0.8 500 152123184 203 3666

56 0.8 500 912023484 188 3633

57 0.8 500 251167074 140 3661

58 0.8 500 703090523 219 3610

59 0.8 500 733447773 125 3646

60 0.8 500 399287411 188 3606

61 0.7 10 1578708367 20609 3323

62 0.7 10 1001241461 17687 3271

63 0.7 10 1119387339 18109 3253

64 0.7 10 814391786 19813 3246

65 0.7 10 152123184 13766 3268

66 0.7 10 912023484 22781 3290

67 0.7 10 251167074 20297 3283

68 0.7 10 703090523 18359 3269

69 0.7 10 733447773 19703 3276

70 0.7 10 399287411 19640 3229

71 0.7 100 1578708367 4797 3368

72 0.7 100 1001241461 312 3626

73 0.7 100 1119387339 1844 3506

74 0.7 100 814391786 1015 3585

75 0.7 100 152123184 1547 3596

76 0.7 100 912023484 594 3629

77 0.7 100 251167074 656 3546

78 0.7 100 703090523 1515 3567

79 0.7 100 733447773 2578 3539

80 0.7 100 399287411 2703 3460

81 0.7 500 1578708367 94 3578

82 0.7 500 1001241461 62 3574

83 0.7 500 1119387339 78 3625

84 0.7 500 814391786 141 3666

85 0.7 500 152123184 78 3656

86 0.7 500 912023484 78 3614

87 0.7 500 251167074 110 3682

88 0.7 500 703090523 109 3625

89 0.7 500 733447773 94 3658

90 0.7 500 399287411 93 3656
Time*: The 1000 is equal to 1 second.

After collecting above implementation results, it starts to do ANOVA. The work use
Minitab to accomplish the job. There are three factors and we consider the
interactions between pair-wise factors. The table 5.2 shows the ANOVA result of the
QAP.

Table 5.2 The ANOVA for the QAP problem
Source DF Seq SS Adj SS Adj MS F P
alpha 2 238400 234598 117299 52.02 0

finalTemperature 2 2092597 2051253 1025627 454.82 0
alpha*finalTemperature 4 251497 245388 61347 27.2 0

Random seed 9 22628 24103 2678 1.19 0.332
alpha*Random seed 18 40350 39249 2180 0.97 0.514

finalTemperature*Random
seed 18 56871 56871 3160 1.4 0.19
Error 36 81181 81181 2255
Total 89 2783525

The ANOVA tells us there are three places which cause significant difference,
including the alpha, finalTemperature, and alpha*finalTemperature. We should
notice that the pair-wise interaction between alpha and finalTemperature is significant
difference, we should analyze it first rather than take them into consideration
separately.

The study uses the following figure to present the interaction effect at figure 5.1. It
shows when we fix the finalTemperature is 100, then there are significant difference
when we apply the different cooling schedule. Otherwise, at the three treatments don’t
cause significant different under the finalTemperature is 10 and 500.

Finally, figure 5.2 shows when we apply the parameter alpha = 0.9 and
finalTemperature = 10 or 100, it may be able to find better solution than others
treatments.

finalTemperature

M
ea

n

50010010

3600

3500

3400

3300

3200

alpha

0.9

0.7
0.8

Interaction Plot (data means) for Obj value (fij*Dij)

Figure 5.1 The interaction between alpha and finalTemperature

M
e

a
n

o
f

O
bj

 v
al

u
e

(f
ij

*
D

ij
)

0.90.80.7

3600

3500

3400

3300

3200
50010010

alpha finalTemperature

The QAP main factor

Figure 5.2 The main effect plot for the cooling schedule alpha and finalTemperature

5.2 The Experimental of Himmelblau Function and its ANOVA
The table 5.3 demons the experimental result of Himmelblau function and table 5.4
presents the ANOVA.

Table 5.3 the experimental result of Himmelblau function

Num α
finalTemperat

ure Random seed Time* x1 x2 Obj value
1 0.9 10 1578708367 15718 2.999 2.005 0.0003
2 0.9 10 1001241461 15250 2.995 2.006 0.0009
3 0.9 10 1119387339 15219 3.000 2.002 0.0001
4 0.9 10 814391786 15203 2.998 2.000 0.0001
5 0.9 10 152123184 15250 3.000 2.002 0.0001
6 0.9 10 912023484 15250 3.001 2.006 0.0007
7 0.9 10 251167074 15219 3.000 2.001 0.0000
8 0.9 10 703090523 15219 3.003 2.005 0.0009
9 0.9 10 733447773 15281 2.999 1.999 0.0001
10 0.9 10 399287411 15359 2.997 2.005 0.0004
11 0.9 100 1578708367 15297 2.999 2.003 0.0001
12 0.9 100 1001241461 15235 2.999 1.998 0.0002
13 0.9 100 1119387339 15250 2.996 2.007 0.0010
14 0.9 100 814391786 15218 2.998 2.005 0.0004
15 0.9 100 152123184 15250 3.000 2.011 0.0020
16 0.9 100 912023484 15344 3.000 2.000 0.0000

17 0.9 100 251167074 15281 3.001 2.001 0.0000
18 0.9 100 703090523 15219 3.002 2.003 0.0005
19 0.9 100 733447773 15281 2.996 1.999 0.0006
20 0.9 100 399287411 15266 3.001 1.998 0.0001
21 0.9 500 1578708367 31 3.012 1.981 0.0071
22 0.9 500 1001241461 16 2.864 2.088 0.5571
23 0.9 500 1119387339 15 2.974 2.012 0.0216
24 0.9 500 814391786 79 3.018 1.965 0.0205
25 0.9 500 152123184 15 2.915 1.962 0.3495
26 0.9 500 912023484 47 3.161 2.019 1.0861
27 0.9 500 251167074 31 2.937 2.150 0.3676
28 0.9 500 703090523 125 3.008 1.937 0.0589
29 0.9 500 733447773 32 2.938 2.042 0.1204
30 0.9 500 399287411 15 3.015 1.947 0.0392
31 0.8 10 1578708367 15266 3.001 1.999 0.0000
32 0.8 10 1001241461 15250 2.999 2.001 0.0001
33 0.8 10 1119387339 15266 3.002 2.002 0.0002
34 0.8 10 814391786 15250 3.001 2.002 0.0001
35 0.8 10 152123184 15266 2.998 1.997 0.0004
36 0.8 10 912023484 15297 3.000 2.000 0.0000
37 0.8 10 251167074 15312 3.003 1.996 0.0004
38 0.8 10 703090523 15234 3.000 2.000 0.0000
39 0.8 10 733447773 15297 3.005 1.988 0.0021
40 0.8 10 399287411 15235 3.000 2.000 0.0000
41 0.8 100 1578708367 11250 3.000 1.999 0.0000
42 0.8 100 1001241461 11547 3.003 2.005 0.0010
43 0.8 100 1119387339 9703 3.005 1.998 0.0007
44 0.8 100 814391786 10812 2.998 1.998 0.0003
45 0.8 100 152123184 10891 2.995 2.000 0.0009
46 0.8 100 912023484 10000 2.998 2.003 0.0002
47 0.8 100 251167074 7329 2.996 2.000 0.0006
48 0.8 100 703090523 10234 3.006 2.004 0.0023
49 0.8 100 733447773 10656 2.999 2.006 0.0005
50 0.8 100 399287411 10078 3.004 2.000 0.0006
51 0.8 500 1578708367 0 3.093 1.945 0.2809
52 0.8 500 1001241461 0 2.994 1.974 0.0161
53 0.8 500 1119387339 0 2.976 2.055 0.0475
54 0.8 500 814391786 31 3.030 1.956 0.0394
55 0.8 500 152123184 15 3.074 2.119 0.6453
56 0.8 500 912023484 32 3.063 1.978 0.1318
57 0.8 500 251167074 15 3.075 1.948 0.1788

58 0.8 500 703090523 32 2.949 1.826 0.7402
59 0.8 500 733447773 0 3.012 2.042 0.0474
60 0.8 500 399287411 62 3.008 1.988 0.0027
61 0.7 10 1578708367 15297 3.001 2.000 0.0000
62 0.7 10 1001241461 15281 3.002 1.992 0.0009
63 0.7 10 1119387339 15313 2.999 1.999 0.0001
64 0.7 10 814391786 15312 2.999 2.000 0.0000
65 0.7 10 152123184 15266 2.998 2.000 0.0002
66 0.7 10 912023484 15266 2.998 2.005 0.0003
67 0.7 10 251167074 15281 3.001 1.993 0.0008
68 0.7 10 703090523 15313 2.998 2.000 0.0001
69 0.7 10 733447773 15328 3.001 2.000 0.0000
70 0.7 10 399287411 15266 2.999 1.996 0.0003
71 0.7 100 1578708367 2796 3.000 2.004 0.0002
72 0.7 100 1001241461 2656 2.991 1.995 0.0044
73 0.7 100 1119387339 3016 2.999 1.984 0.0049
74 0.7 100 814391786 4562 3.001 1.999 0.0000
75 0.7 100 152123184 3844 3.013 1.989 0.0057
76 0.7 100 912023484 3969 3.004 1.992 0.0010
77 0.7 100 251167074 3469 2.994 2.003 0.0011
78 0.7 100 703090523 3968 3.003 2.006 0.0011
79 0.7 100 733447773 2422 2.996 2.002 0.0005
80 0.7 100 399287411 3547 3.004 1.986 0.0027
81 0.7 500 1578708367 15 3.116 1.905 0.4432
82 0.7 500 1001241461 0 3.628 -1.528 2.7571
83 0.7 500 1119387339 16 2.970 2.029 0.0307
84 0.7 500 814391786 0 2.949 2.217 0.7591
85 0.7 500 152123184 16 2.980 1.648 1.9367
86 0.7 500 912023484 0 2.964 2.134 0.2759
87 0.7 500 251167074 0 2.932 2.152 0.3821
88 0.7 500 703090523 0 3.110 1.807 0.6218
89 0.7 500 733447773 0 2.801 2.103 1.1634
90 0.7 500 399287411 0 3.090 1.674 1.2853

Time*: The 1000 is equal to 1 second.

Table 5.4 The ANOVA of the Himmelblau function
Source DF Seq SS Adj SS Adj MS F P
alpha 2 1.18544 1.18544 0.59272 6.14 0.005

finalTemperature 2 4.60276 4.60276 2.30138 23.85 0
alpha*finalTemperature 4 2.35656 2.35656 0.58914 6.1 0.001

Random seed 9 0.97801 0.97801 0.10867 1.13 0.37
alpha*Random seed 18 1.74195 1.74195 0.09677 1 0.479

finalTemperature*Random
seed 18 1.94582 1.94582 0.1081 1.12 0.374
Error 36 3.47425 3.47425 0.09651
Total 89 2783525

By the ANOVA, we can understand the result is the same with QAP experiment,
which alpha, finalTemperature, and alpha*finalTemperature cause significant
difference. Therefore, we also do the analysis of alpha*finalTemperature and the
figure 5.2 illustrates the interaction result. From the figure, we can see no matter
under what kinds of cooling schedule, the treatments 10 and 100 of finalTemperature
are overlap together which is also means there is no significant different. However,
when it comes to the treatment 100 of finalTemperature, it is significant worse than
others. Finally, the figure 5.4 shows the result of the two main factors which cause
significant difference. Moreover, as for alpha, there is no difference between alpha =
0.8 or 0.9 although 0.8 is slightly better than 0.9. However, both of them are
significantly better than 0.7. Then, the treatment, 10 and 100, of the finalTemperature
that are the same and they are significantly better than the treatment of
finalTemperature at 500.

alpha

M
ea

n

0.90.80.7

1.0

0.8

0.6

0.4

0.2

0.0

finalTemperature

500

10
100

Interaction Plot (data means) for obj

Figure 5.3 The interaction between the alpha and finalTemperature

M
e

an
 o

f
ob

j

0.90.80.7

0.5

0.4

0.3

0.2

0.1

0.0

50010010

alpha finalTemperature

Main Effects Plot (data means) for obj

Figure 5.4 The main effect plot of the alpha and finalTemperature

6. Discussion and Conclusions

6.1 Discussion of the Study
After doing above experiment, we may find some places are worthwhile to be
discussed, which are the factors that caused significant difference. First of all, the
factors cause significant difference are the same at the combinatorial problem and the
continuous problem. Moreover, there exists an interaction between the alpha and
finalTemperature, it may mean we should consider it carefully. By the figure 5.1 and
5.3, it tells us when we choose higher finalTemperature (higher than 100), we have
better not to select the cooling schedule which is also small (less than 0.8). Or it
causes poor performance.

Second, the finalTemperature is smaller (less than 100) may lead to better solution.
The reason is the algorithm that has more chance to explore solution space. Of course,
too small finalTemperature is not very necessary because it may waste more
computational time when it may has found better solution. Then, because the higher
finalTemperature may stop too earlier when it does iteration, it is unable to yield good
solution quality.

Finally, about the selection of the treatment of alpha, although the 0.8 at continuous
problem may slightly better than 0.9, however, the treatment 0.9 is significantly better
than 0.8. Therefore, the study still recommends solving different problems by 0.9. The
table 6.1 is the suggested parameters for SA

Table 6.1 Suggested Parameters of SA

Factor Treatment
Cooling schedule 0.9
Local search At least 1000 for combinatorial problem
Initial temperature 1000
Final temperature 10 to 100

6.2 Conclusions
The work discusss the QAP and Himmelblau function, which are belonged to
combinatorial problem and continuous problem respectively. We can understand
some parameters are significantly influences the solution quality. Therefore, we can
select them based on the findings from the experiment result.

There are some techniques are implemented here. First of all, we introduce the GA
operator into the SA framework. For example, 1. Each solution is treated as a
chromosome, 2. The local search operators are borrowed from the mutation operator
of swap mutation, shift mutation, and the inverse mutation 3. Because the three local
search operators modify the original solution into three different solution, it can be
seen as a small population. Therefore, the study uses binary tournament to select
better solution depending on their objective value. 4. The reheating technique is also
applied in the work. Besides, we may restore the current solution back to current best
when it encounters a number of iterations doesn’t find better solution. Then, because
both of them may also influence the solution quality, it can be as a future work to
discuss them.

Finally, the study designs an object-oriented component, OpenSA, and integrated
some techniques that is mentioned above to solve different problems. The interfaces
of SA have been well-defined in the OpenSA. Besides, it may also be able to extend
to solve the multiobjective problem. Therefore, it may provide a useful platform to do
the research on the SA and solve variety problems.

Appendix: Nugent 30

 int flow[][] = new int[][]
 {{0,1,2,3,4,5,1,2,3,4,5,6,2,3,4,5,6,7,3,4,5,6,7,8,4,5,6,7,8,9},
 {1,0,1,2,3,4,2,1,2,3,4,5,3,2,3,4,5,6,4,3,4,5,6,7,5,4,5,6,7,8},
 {2,1,0,1,2,3,3,2,1,2,3,4,4,3,2,3,4,5,5,4,3,4,5,6,6,5,4,5,6,7},
 {3,2,1,0,1,2,4,3,2,1,2,3,5,4,3,2,3,4,6,5,4,3,4,5,7,6,5,4,5,6},
 {4,3,2,1,0,1,5,4,3,2,1,2,6,5,4,3,2,3,7,6,5,4,3,4,8,7,6,5,4,5},
 {5,4,3,2,1,0,6,5,4,3,2,1,7,6,5,4,3,2,8,7,6,5,4,3,9,8,7,6,5,4},
 {1,2,3,4,5,6,0,1,2,3,4,5,1,2,3,4,5,6,2,3,4,5,6,7,3,4,5,6,7,8},
 {2,1,2,3,4,5,1,0,1,2,3,4,2,1,2,3,4,5,3,2,3,4,5,6,4,3,4,5,6,7},
 {3,2,1,2,3,4,2,1,0,1,2,3,3,2,1,2,3,4,4,3,2,3,4,5,5,4,3,4,5,6},
 {4,3,2,1,2,3,3,2,1,0,1,2,4,3,2,1,2,3,5,4,3,2,3,4,6,5,4,3,4,5},
 {5,4,3,2,1,2,4,3,2,1,0,1,5,4,3,2,1,2,6,5,4,3,2,3,7,6,5,4,3,4},
 {6,5,4,3,2,1,5,4,3,2,1,0,6,5,4,3,2,1,7,6,5,4,3,2,8,7,6,5,4,3},
 {2,3,4,5,6,7,1,2,3,4,5,6,0,1,2,3,4,5,1,2,3,4,5,6,2,3,4,5,6,7},
 {3,2,3,4,5,6,2,1,2,3,4,5,1,0,1,2,3,4,2,1,2,3,4,5,3,2,3,4,5,6},
 {4,3,2,3,4,5,3,2,1,2,3,4,2,1,0,1,2,3,3,2,1,2,3,4,4,3,2,3,4,5},
 {5,4,3,2,3,4,4,3,2,1,2,3,3,2,1,0,1,2,4,3,2,1,2,3,5,4,3,2,3,4},
 {6,5,4,3,2,3,5,4,3,2,1,2,4,3,2,1,0,1,5,4,3,2,1,2,6,5,4,3,2,3},
 {7,6,5,4,3,2,6,5,4,3,2,1,5,4,3,2,1,0,6,5,4,3,2,1,7,6,5,4,3,2},
 {3,4,5,6,7,8,2,3,4,5,6,7,1,2,3,4,5,6,0,1,2,3,4,5,1,2,3,4,5,6},
 {4,3,4,5,6,7,3,2,3,4,5,6,2,1,2,3,4,5,1,0,1,2,3,4,2,1,2,3,4,5},
 {5,4,3,4,5,6,4,3,2,3,4,5,3,2,1,2,3,4,2,1,0,1,2,3,3,2,1,2,3,4},
 {6,5,4,3,4,5,5,4,3,2,3,4,4,3,2,1,2,3,3,2,1,0,1,2,4,3,2,1,2,3},
 {7,6,5,4,3,4,6,5,4,3,2,3,5,4,3,2,1,2,4,3,2,1,0,1,5,4,3,2,1,2},
 {8,7,6,5,4,3,7,6,5,4,3,2,6,5,4,3,2,1,5,4,3,2,1,0,6,5,4,3,2,1},
 {4,5,6,7,8,9,3,4,5,6,7,8,2,3,4,5,6,7,1,2,3,4,5,6,0,1,2,3,4,5},
 {5,4,5,6,7,8,4,3,4,5,6,7,3,2,3,4,5,6,2,1,2,3,4,5,1,0,1,2,3,4},
 {6,5,4,5,6,7,5,4,3,4,5,6,4,3,2,3,4,5,3,2,1,2,3,4,2,1,0,1,2,3},
 {7,6,5,4,5,6,6,5,4,3,4,5,5,4,3,2,3,4,4,3,2,1,2,3,3,2,1,0,1,2},
 {8,7,6,5,4,5,7,6,5,4,3,4,6,5,4,3,2,3,5,4,3,2,1,2,4,3,2,1,0,1},
 {9,8,7,6,5,4,8,7,6,5,4,3,7,6,5,4,3,2,6,5,4,3,2,1,5,4,3,2,1,0}};

 int distance[][] = new int[][]
 {{0,3,2,0,0,2,10,5,0,5,2,5,0,0,2,0,5,6,3,0,1,10,0,10,2,1,1,1,0,1},
 {3,0,4,0,10,4,0,0,2,2,1,0,5,0,0,0,0,2,0,1,6,1,0,1,2,2,5,1,10,5},
 {2,4,0,3,4,0,5,5,5,1,4,1,0,4,0,4,0,6,3,2,5,5,2,1,0,0,3,1,0,2},
 {0,0,3,0,0,0,0,2,2,0,6,0,2,5,2,5,1,1,1,1,2,2,4,0,2,0,2,2,5,5},
 {0,10,4,0,0,5,2,0,0,0,0,2,0,0,0,0,2,1,0,0,2,0,5,1,0,2,1,0,2,1},
 {2,4,0,0,5,0,1,2,2,1,4,10,10,2,5,5,0,5,0,0,0,10,0,0,0,4,0,10,1,1},
 {10,0,5,0,2,1,0,10,10,5,10,10,6,0,0,10,2,1,10,1,5,5,2,3,5,0,2,0,1,3},
 {5,0,5,2,0,2,10,0,1,3,5,0,0,0,2,4,5,2,10,6,0,5,5,2,5,0,5,5,0,2},
 {0,2,5,2,0,2,10,1,0,10,2,1,5,2,0,3,0,2,0,0,4,0,5,2,0,5,2,2,5,2},
 {5,2,1,0,0,1,5,3,10,0,5,5,6,0,1,5,5,0,5,2,3,5,0,5,2,10,10,1,5,2},
 {2,1,4,6,0,4,10,5,2,5,0,0,0,1,2,1,0,2,0,0,0,6,6,0,4,5,3,2,2,10},
 {5,0,1,0,2,10,10,0,1,5,0,0,5,5,2,0,0,0,0,2,0,4,5,10,1,0,0,0,0,1},
 {0,5,0,2,0,10,6,0,5,6,0,5,0,2,0,4,2,2,1,0,6,2,1,5,5,0,0,1,5,5},
 {0,0,4,5,0,2,0,0,2,0,1,5,2,0,2,1,0,5,3,10,0,0,4,2,0,0,4,2,5,5},
 {2,0,0,2,0,5,0,2,0,1,2,2,0,2,0,4,5,1,0,1,0,5,0,2,0,0,5,1,1,0},

 {0,0,4,5,0,5,10,4,3,5,1,0,4,1,4,0,0,3,0,2,2,0,2,0,5,0,5,2,5,10},
 {5,0,0,1,2,0,2,5,0,5,0,0,2,0,5,0,0,2,2,0,0,0,6,5,3,5,0,0,5,1},
 {6,2,6,1,1,5,1,2,2,0,2,0,2,5,1,3,2,0,5,1,2,10,10,4,0,0,5,0,0,0},
 {3,0,3,1,0,0,10,10,0,5,0,0,1,3,0,0,2,5,0,0,5,5,1,0,5,2,1,2,10,10},
 {0,1,2,1,0,0,1,6,0,2,0,2,0,10,1,2,0,1,0,0,5,2,1,3,1,5,6,5,5,3},
 {1,6,5,2,2,0,5,0,4,3,0,0,6,0,0,2,0,2,5,5,0,4,0,1,0,0,0,5,0,0},
 {10,1,5,2,0,10,5,5,0,5,6,4,2,0,5,0,0,10,5,2,4,0,5,0,4,4,5,0,2,5},
 {0,0,2,4,5,0,2,5,5,0,6,5,1,4,0,2,6,10,1,1,0,5,0,0,4,4,1,0,2,2},
 {10,1,1,0,1,0,3,2,2,5,0,10,5,2,2,0,5,4,0,3,1,0,0,0,5,5,0,1,0,0},
 {2,2,0,2,0,0,5,5,0,2,4,1,5,0,0,5,3,0,5,1,0,4,4,5,0,1,0,10,1,0},
 {1,2,0,0,2,4,0,0,5,10,5,0,0,0,0,0,5,0,2,5,0,4,4,5,1,0,0,0,0,0},
 {1,5,3,2,1,0,2,5,2,10,3,0,0,4,5,5,0,5,1,6,0,5,1,0,0,0,0,0,0,10},
 {1,1,1,2,0,10,0,5,2,1,2,0,1,2,1,2,0,0,2,5,5,0,0,1,10,0,0,0,2,2},
 {0,10,0,5,2,1,1,0,5,5,2,0,5,5,1,5,5,0,10,5,0,2,2,0,1,0,0,2,0,2},
 {1,5,2,5,1,1,3,2,2,2,10,1,5,5,0,10,1,0,10,3,0,5,2,0,0,0,10,2,2,0}};

