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Abstract
In this paper, a genetic algorithm with injecting artificial chromosomes is developed to solve the single machine scheduling problems.

Artificial chromosomes are generated according to a probability matrix which is transformed from the dominance matrix by mining the

gene structure of an elite base. A roulette wheel selection method is applied to generate an artificial chromosome by assigning genes

onto each position according to the probability matrix. The higher the probability is, the more possible that the job will show up in

that particular position. By injecting these artificial chromosomes, the genetic algorithm will speed up the convergence of the evolutionary

processes. Intensive experimental results indicate that proposed algorithm is very encouraging and it can improve the solution quality

significantly.
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1. Introduction

More and more sophisticated evolutionary algorithms (EAs)

have been proposed and developed to solve combinatorial

problems in recent years. Some of them were quite successful;

however, it is not always clear why and how an EA works. In

this research, we take a close look at the evolutionary process

for a single machine scheduling problem and come out with the

new idea of generating artificial chromosomes to further

improve the solution quality of the genetic algorithm.

An artificial chromosome is generated by a fitness-based gene

mutation matrix to be injected into the evolutionary procedure.

From the point of view of searching each gene allocation

distribution, a simple gene mutation matrix (a probability matrix)

is developed, which directly extracts the gene information from

current chromosomes. In addition, the proposed approach is also

applied to illustrate how insights gained which can be further

converted into our understanding of EA’s behaviors and guide us
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in developing new and better techniques. The proposed algorithm

will be tested on a single machine scheduling problem with the

objectives to minimize the total deviations. In addition, the

proposed algorithm will be compared with a set of dominance

properties developed by us in earlier studies to evaluate the

effectiveness of the new algorithm.

The rest of the paper is organized as follows: Section 2

evaluates the literature in the field of genetic algorithm and

single machine scheduling with the objective of minimizing

total deviations. Section 3 describes the approach of mining

gene structure information from the elite base, the transforma-

tion of a probabilistic matrix from dominance matrix and the

generation procedure of the artificial chromosomes. Design of

experiment for the parameter setup of the genetic algorithm

with injecting AC is conducted and the intensive experiments

are tested against other approaches in Section 4. Finally,

Section 5 gives the conclusion and future development of the

research.

2. Literature review

There are two categories of literature to be reviewed in this

research: one is the genetic algorithm and the other is the single

machine scheduling problem.
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2.1. Review of the genetic algortihm

Genetic algorithms (GAs) are powerful search techniques

that are used successfully to solve problems in many different

disciplines. The genetic algorithm relies on genetic operators

for selection, crossover, mutation, and replacement. The

selection operators use the fitness values to select a portion of

the population to be parents for the next generation. Parents

are combined using the crossover and mutation operators to

produce offspring. This process combines the fittest chromo-

somes and passes superior genes to the next generation, thus

providing new points in the solution space. The replacement

operators ensure that the ‘least fit’ or weakest chromosomes

of the population are displaced by more fit chromosomes.

Application of GA in various scheduling and other application

problems can be referred in refs. [3,7,11–14], however, as

observed by most researchers the GA will be trapped into

local optimality in the earlier stages and cannot be converged

into global optimal in most of the cases. The problems with

the steady states GAs having premature convergence led to

the desire to further improve the convergence of the

algorithm. Especially, for most combinatorial problems such

as Traveling Salesman Problems (TSP), machine scheduling

problems, and vehicles routing problems are very difficult to

solve and even for moderate cases the GA will be converged

prematurely.

Apart from our previous works which extract gene

information directly, many researchers have presented new

genetic domain-dependent operators, for instance, see refs.

[15,25]. Nevertheless, no new biologically inspired genetic

operators have been widely adopted since the advent of GAs.

Mitchell and Forrest [26] point out the importance of studying

new genetic operators. Mitchell and Forrest [26] and Mitchell

[27] state that it would be interesting to analyze if any of these

biological mechanisms, incorporated in a GA, could lead to any

significant advantages. Banzhaf et al. [5] share the same

opinion and they highlight the significance of implementing

evolutionary approaches using mechanisms such as conjuga-

tion, transduction or transposition.

Jiao and Wang [18] introduce a novel genetic algorithm

based on immunity (IGA), where a vaccine was regarded as a

kind of knowledge related to the pending question and by

vaccination the role of guidance function of the knowledge to

evolutionary process. Yang et al. [40] present a novel algorithm

called Ge–Ga, which combined a gene pool and a GA to direct

the evolution of the whole population and efficiently improved

the convergence speed and ability of finding the global optimal

solution. Robles et al. [32] propose a hybrid algorithm which

mixes the generic chromosomes and artificial chromosomes

generated by estimation of distribution algorithm. Zhang and

Szeto [41]] classify the above algorithm into EDA. For

extensive review of evolutionary algorithm based on prob-

ability models, please refer to refs. [18,20,24]. Wang et al. [38]

present a novel genetic algorithm (GTGA) with analogies to the

concept and method of gene therapy theory. The core of GTGA

lies on construction of a gene pool and a therapy operator. The

method of creation and updating of the gene pool and
construction of the therapy operator are very effective in

restraining the premature convergence.

2.2. Review of the single machine scheduling problem

In this paper, a deterministic single machine scheduling

problem without release date is investigated and the objective is

to minimize the total sum of earliness and tardiness penalties. A

detailed formulation of the problem is described as follows: A

set of n independent jobs {J1, J2, . . ., Jn} has to be scheduled

without preemptions on a single machine that can handle at

most one job at a time. The machine is assumed to be

continuously available from time zero onwards and unforced

machine idle time is not allowed. Job Jj, j = 1, 2, . . ., n becomes

available for processing at the beginning, requires a processing

time pj and should be completed on its due date dj. For any

given schedule, the earliness and tardiness of Jj can be

respectively defined as Ej = max(0, d � Cj) and Tj = max(0,

Cj � d), where Cj is the completion time of Jj. The objective is

then to find a schedule that minimizes the sum of the earliness

and tardiness penalties of all jobs
Pn

j¼1ða jE j þ b jT jÞ, where

aj and bj are the earliness and tardiness penalties of job Jj. The

inclusion of both earliness and tardiness costs in the objective

function is compatible with the philosophy of just-in-time

production, which emphasizes producing goods only when they

are needed. The early cost may represent the cost of completing

a product early, the deterioration cost for a perishable goods or a

holding (stock) cost for finished goods. The tardy cost can

represent rush shipping costs, lost sales and loss of goodwill. It

is assumed that no unforced machine idle time is allowed, so the

machine is only idle if no job is currently available for

processing. This assumption reflects a production setting where

the cost of machine idleness is higher than the early cost

incurred by completing any job before its due date, or the

capacity of the machine is limited when compared with its

demand, so that the machine must indeed be kept running.

Some specific examples of production settings with these

characteristics are provided by refs. [4,30,31,34,35,39]. The set

of jobs is assumed to be ready for processing at the beginning

which is a characteristic of the deterministic problem. As a

generalization of weighted tardiness scheduling, the problem is

strongly NP-hard in ref. [21]. To the best of our knowledge, the

earlier work in this problem is due to refs. [8–10,39]. Belouadah

et al. [6] deal with the similar problem however with a different

objective in minimizing the total weighted completion time and

the problem is the same as discussed in ref. [17]. Kim and Shin

[19] discuss some properties of the optimal solution, and these

properties are used to develop both optimal and heuristic

algorithms. Later on, Akturk and Ozdemir [2] develop various

dominance rules to solve the problem. Valente and Alves [36]

and Valente and Alves [37] present a branch-and-bound

algorithm based on a decomposition of the problem into

weighted earliness and weighted tardiness sub-problems. Two

lower bound procedures are presented for each sub-problem,

and the lower bound for the original problem is then simply the

sum of the lower bounds for the two sub-problems. In ref. [36]

they analyze the performance of various heuristic procedures,



Fig. 1. The framework of the GA with injecting artificial chromosomes.
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including dispatch rules, a greedy procedure and a decision

theory search heuristic.

The early/tardy problem with equal release dates and no idle

time, however, has been considered by several authors, and both

exact and heuristic approaches have been proposed. Among the

exact approaches, branch-and-bound algorithms are presented

by refs. [1,22,23]. The lower bounding procedure of ref. [1] is

based on the sub-gradient optimization approach and the

dynamic programming state–space relaxation technique, while

refs. [22,23] use Lagrangean relaxation and the multiplier

adjustment method. Among the heuristics, ref. [30] develop

several dispatch rules and a filtered beam search procedure. In

ref. [37], they present an additional dispatch rule and a greedy

procedure, and also consider the use of dominance rules to

further improve the schedule obtained by the heuristics. A

neighborhood search algorithm is also presented by ref. [22].

3. Methodology

As surveyed in the literature, most approaches in solving the

single machine scheduling problems are traditional optimiza-

tion methods, such as branch-and-bound algorithm; dynamic

programming; Lagrangean relaxation and Heuristics. Instead,

the genetic algorithm is proposed in this research to solve the

SME problems. However, to prevent the premature conver-

gence, artificial chromosomes will be generated to speed up the

convergence and jump out the local optimality to reach a near

global optimal.

The first observation in this research is that during the

evolving process of the GA, all the chromosomes will converge

slowly into certain distribution after the final runs. If we take a

close look at the distribution of each gene in each assigned

position, we will find out that most the genes will be converged

into certain locations which means the gene can be allocated to

the position if there is a probabilistic matrix to guide the

assignment of each gene to each position.

Artificial chromosomes are developed according to this

observation and a dominance matrix will record this gene

distribution information. The dominance matrix is transformed

into a probability matrix to decide the next assignment of a gene

to a position. Consequently, AC is integrated into the procedure

of genetic algorithm and it attends to improve the performance

of genetic algorithm. The primary procedure is to collect gene

information first and to use the gene information to generate

artificial chromosomes. Before collecting the gene information,

AC collects the chromosomes whose fitness is better by

comparing the fitness value of each chromosome with average

fitness value of current population. Thus, the average fitness is

calculated. A detailed procedure of the ACGA algorithm is

depicted in Fig. 1.

A main procedure of the AC algorithm is listed as follows:

Main procedure

Population: The population used in the genetic algorithm.

Generations: The number of generations.

StartingGen: It determines when does the AC works.

Interval: The frequency to generate artificial chromosomes.
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The following is the detail procedures of the AC approach:

Step 1: Initial population generation

An initial population consists of a number of chromosomes.

A chromosome represents a processing sequence for the

scheduling problem. Therefore, it is feasible to use integer

numbers and the permutation of the integers to represent the

jobs and feasible sequences, respectively. Taking a five-job case

as an example, {1, 2, 3, 4, and 5} represents the jobs to be

processed. If the sequence is determined and represented as 2-

1-5-4-3, that means the processing order is job 2, job 1, job 5,

job 4, and job 3. To keep diversity in the initial population,

random number generation is applied to generate initial

sequences.

Step 2: Evaluate objective and fitness

The objective function of this scheduling problem isPn
j¼1ðE j þ T jÞ for a set of job, which is explained in Section

1. Because this problem is a single objective problem, this

objective value is also represented as the fitness of a

chromosome.

Step 3: Genetic operators

After the fitness of each chromosome is calculated, the

selection operator will choose better chromosomes to be

survived. Although there are several selection operators,

such as tournament selection, proportionate selection, and

ranking selection. Since tournament selection has better

convergence and computational time-complexity pro-

perties than others by ref. [16]. Therefore, a binary

tournament operator is employed, which selects the better

chromosomes with lower objective values in this minimiza-

tion problem.

In the crossover step, two chromosomes are randomly

selected and a random number rc is generated first. If rc is

smaller than Pc, then crossover implements on this pair, else no

crossover. In refs. [28,29], they reported that two-point

crossover is effective in scheduling problems. Therefore, this

study applies the two-point crossover operator to mate

chromosomes.

Finally, a swap mutation operator is used because of its

simplicity. There are two positions of a chromosome, which are

randomly selected and a random number rm is generated first. If

rm is smaller than Pm, then mutation implements on this pair,

else no mutation. For example, a sequence is 2-9-5-3-4-8-10-6-

7-1, and swapping positions 2 and 7 are assigned. The

corresponding jobs at positions 2 and 7 are job 9 and job 10.

Then the two jobs are interchanged and the sequence becomes

2-10-5-3-4-8-9-6-7-1 after mutation.

Step 4: Artificial chromosome operators

The artificial chromosome operator has two parameters, i.e.,

startingGen and generation interval, to be setup. The parameter

configuration is done by design of experiment (DOE), which

shows there is no significant difference. So the startingGen and

generation interval are set to 500 and 50, respectively. The

detail procedures of the artificial chromosome operator are

described as follows:

Step 4.1: To calculate average fitness and to convert gene

information into dominance matrix

P.-C. Chang et al. / Applied So770
Instead of collecting all gene information from a population,

we select better chromosomes which are compared with the

average fitness of the population in the current generation. For a

better chromosome, if job i exists at position j, the number of

occurrence of Xij is incremented by 1. For chromosome k,

Xi j ¼
1 if job i assigned to position j
0 if job i not in position j

�
(1)

There are m chromosomes and the frequency of job i on

position j ( f ij) within the dominance matrix F, will be

calculated as follows:

f i jðtÞ ¼
Xn

k¼1

Xk
i j; i ¼ 1; . . . ; n; j ¼ 1; . . . ; n; k ¼ 1; . . . ;m

(2)

Step 4.2: Generate artificial chromosomes

As soon as we collect gene information into dominance

matrix, we are going to assign jobs onto the positions of each

artificial chromosome. A probability matrix is further

derived from the dominance matrix by the following:

Pi jðtÞ ¼
PN

k¼1 Xk
i j

N
(3)

where Pij(t) is the probability of job i to be assigned in position

j.

PðtÞ ¼
P11ðtÞ � � � P1nðtÞ

..

.
} ..

.

Pn1ðtÞ . . . PnnðtÞ

0
B@

1
CA (4)

The assignment sequence for every position is assigned

randomly, which is able to diversify the artificial chromosomes.

Step 4.3: In order to enhance the convergence ability of the

proposed algorithm, a m + l replacement strategy is applied.

m is the parent chromosomes and l is the artificial

chromosomes generated in Step 2. After we evaluate the

fitness of artificial chromosomes, the parent chromosomes

and artificial chromosomes are combined into together, whose

population size is m + l. Then, we select the size of m from the

m + l chromosomes deterministically. The new population

becomes the parent chromosomes and the proposed algorithm

employs it to continually evolve. Consequently, better

solutions are preserved to the next generation.

To demonstrate the working theory of the artificial

chromosome generation procedure, a five-job problem is

illustrated. Suppose there are 10 sequences (chromosomes)

whose fitness is better than average fitness. Then, we

accumulate the gene information from these ten chromosomes

to form a dominance matrix. As shown in the left-hand side of

Fig. 2, there are two job 1, two job 2, two job 3, one job 4, and

three job 5 on position. Again, there are three job 1, one job 2,

two job 3, three job 4, and one job 5 on position 2. The

procedure will repeat for the rest of the position. Finally, the

dominance matrix contains the gene information from better

chromosomes is illustrated in the right-hand side of Fig. 2.



Fig. 2. Collecting gene information and converting it into a dominance matrix.
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Then, the probabilistic matrix is further derived according to

Eq. (3) from the dominance matrix and it shown in Table 1.

The probability distribution of each job assigned to each

specific position is again shown in Fig. 3. In the earlier

population, the diversity of the chromosome is still very wild

therefore the probability distribution of each job onto each

position is very even, i.e., close to 0.2(1/5).

To generate a sequence, each job has to be assigned a

specific position according to a pre-defined assignment

strategy. This paper studied two kinds of assignment

strategies which are sequential (e.g., 1-2-3-4-5) and random

assignment (e.g., 3-2-5-1-4). After the assignment strategy is

determined, the job selected will be assigned to each position

by a roulette wheel selection method based on the probability

of each job on this position. After a job is assigned to a

specific position, the data in the dominance matrix for

that particular job and specific position are removed. Then,

next job will be selected for assignment until all jobs are

assigned.

For example, if the first job will be assigned at position 3

as shown in Fig. 3, the frequency of each job shown up at

position 3 is [1, 3, 1, 1, and 4]. The corresponding probability

for job 1 is 1/10; job 2 is 3/10, and so on. Then, the
Table 1

A probabilistic matrix transformed from a dominance matrix

Jobs Position

1 2 3 4 5

1 0.2 0.3 0.1 0.2 0.2

2 0.2 0.1 0.3 0.2 0.2

3 0.2 0.2 0.1 0.3 0.2

4 0.1 0.3 0.1 0.2 0.3

5 0.3 0.1 0.4 0.1 0.1
probability from job 1 to 5 is accumulated. The probability

and accumulated probability of each job in position 3 is

shown in Table 2.

According to the roulette wheel selection method, if a

random probability generated is 0.6, then job 4 will be assigned

to position 3. Assume the position 2 is the next one to be

assigned, an updated dominance matrix is shown in Table 3.

Again, following the same procedure, the probability of each

job in position 2 is calculated as well as the accumulated

probability. Then, a roulette wheel selection method will select

a job based on the accumulated probability of each job.

Consequently, all jobs will be assigned a specific position.

Finally, a new job sequence according to the dominance matrix

is generated.

4. Experimental result

To test the effectiveness of ACGA, we compared this

algorithm with dominance properties, and GA with dominance

properties. In addition, in order to make sure the proposed

algorithm works well, single machine scheduling problems

with the objective to minimize the early–tardy cost are

presented. The testing instances are taken from [33] for
Fig. 3. The probability distribution of each job assigned to each specific

position.



Table 2

The probability matrix and accumulated probability of each job in position 3

Job Position 3 Probability Accumulated

1 1 1/10 1/10

2 3 3/10 4/10

3 1 1/10 1/10

4 1 1/10 1/10

5 4 4/10 10/10

Table 3

An updated dominance matrix after assigning job 4 at position 3

Table 4

The factors and the treatment of each factor

Factor Treatments

Instance 20, 30, 40, 50, 60, 90

StartingGen 200, 500

Interval 25, 50

Assignseq 0 (sequential), 1 (random)

Fig. 4. The interaction plot of the ACGA in single machine scheduling.
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benchmark tests. Since there are some parameters in the

proposed algorithm, we did a design-of-experiment to

determine the parameter settings in Section 4.1. The experi-

mental comparison is shown in Section 4.2.

4.1. Parameter configurations in single machine problem

There are two parameters of the ACGA, including the

starting generations and the interval or frequency of the

ACGA executed. In addition, there are two methods to

determine the assignment sequence for each position, which

are sequential and random assignment. Three of them are the

factors in the DOE. Each combination of these factors is

replicated 30 times. Table 4 is the list of these factors and its

corresponding levels.
Table 5

ANOVA result of ACGA in single machine problem

Source d.f. Seq SS

instance 5.30E+01 7.23E+

startinggen 1 3

interval 1 1,008

assignseq 1 27

instance � startingGen 53 93,711

instance � interval 53 80,583

Instance � assignseq 53 114,672

startinggen � interval 1 19

startinggen � assignseq 1 15,712

interval � assignseq 1 2,730

instance � startingGen � interval 53 143,992

instance � startingGen � assignseq 53 89,478

instance � interval � assignseq 53 233,927

startinggen � interval � assignseq 1 1,086

instance � startingGen � interval � assignseq 53 101,760

Error 12,528 4.01E+

Total 12,959 7.23E+
Table 5 shows the ANOVA result of ACGA in single machine

problem. There are four different factors to be evaluated and they

are starting generation (when the AC procedure starts to

function), interval (how many generations AC to be injected

again), assigning sequence (the sequence for a job to be assigned

to a specific position), and instance (the block factor and it is not

necessary to analyze this effect). As can be observed from the

table, the F- and P-value all shows that the interaction factor

starting generation, assigning sequences and instance � interval

� assignseq are significant. The interaction factor is significant if

P-value is less than or equal to 0.05. Because the F-value of

startingGen � assignseq is higher, i.e., 4.91, this interaction

factor will be determined first.

Through the interaction plot as shown in Fig. 4, when the

starting generation is 500 and the assignment method is 1 (the
Adj SS Adj MS F P

12 7.23E+12 1.36E+11 42,643,119 0.000

3 3.00 0.00 0.977

1,008 1008.00 0.32 0.575

27 27.00 0.01 0.927

93,711 1768.00 0.55 0.997

80,583 1520.00 0.48 1.000

114,672 2164.00 0.68 0.966

19 19.00 0.01 0.938

15,712 15712.00 4.91 0.027

2,730 2730.00 0.85 0.356

143,992 2717.00 0.85 0.774

89,478 1688.00 0.53 0.998

233,927 4414.00 1.38 0.035

1,086 1086.00 0.34 0.560

101,760 1920.00 0.60 0.991

07 4.01E+07 3,199

12



Table 6

The parameter settings of ACGA in the single machine problem

Factor Parameter setting

Starting generation 500

Interval 50

Assignment method Random assign

Table 7

The minimum, mean, and maximum objective value of the four algorithms

Instance SGA GADP

Min Mean Max Min Mean Max

sks222a 5,286 5,402 5,643 5,286 5,291 5,298

sks225a 3,958 4,174 4,389 3,958 3,959 3,977

sks228a 2,085 2,156 2,749 2,085 2,085 2,085

sks252a 4,052 4,195 4,508 3,947 3,947 3,947

sks255a 2,388 2,489 2,787 2,372 2,372 2,372

sks258a 1,184 1,250 1,371 1,184 1,242 1,248

sks282a 4,348 4,435 4,695 4,348 4,353 4,355

sks285a 4,452 4,643 4,895 4,452 4,452 4,452

sks288a 3,421 3,518 3,847 3,421 3,421 3,421

sks322a 11,623 12,066 12,916 11,568 11,572 11,622

sks325a 7,615 8,152 9,650 7,587 7,703 7,904

sks328a 3,195 3,556 4,810 3,164 3,164 3,164

sks352a 7,588 8,203 9,063 7,395 7,395 7,395

sks355a 6,202 6,849 7,693 6,056 6,068 6,212

sks358a 3,104 3,283 3,787 3,069 3,074 3,076

sks382a 11,157 11,319 11,558 11,140 11,152 11,160

sks385a 9,157 9,212 9,389 9,148 9,148 9,148

sks388a 11,321 11,499 11,789 11,317 11,317 11,317

sks422a 25,656 26,211 27,462 25,656 25,658 25,712

sks425a 12,725 13,592 15,198 12,601 12,604 12,605

sks428a 7,237 7,741 8,761 7,129 7,129 7,141

sks452a 11,804 12,634 14,053 11,367 11,367 11,367

sks455a 6,573 7,566 9,435 6,405 6,405 6,405

sks458a 4,424 5,587 8,331 4,294 4,303 4,319

sks482a 19,656 20,122 20,605 19,559 19,580 19,735

sks485a 15,459 16,023 16,576 15,256 15,309 15,480

sks488a 17,374 17,999 18,668 16,862 16,881 16,906

sks522a 29,485 30,623 32,340 29,309 29,322 29,507

sks525a 25,693 26,113 26,713 25,433 25,436 25,517

sks528a 11,154 12,037 13,121 10,798 10,821 10,823

sks552a 23,491 24,827 26,241 22,863 22,863 22,863

sks555a 10,877 12,233 14,626 10,207 10,243 10,446

sks558a 5,776 7,345 9,358 5,269 5,298 5,416

sks582a 28,375 29,154 30,551 27,939 28,117 28,352

sks585a 25,200 25,862 26,447 24,828 24,830 24,853

sks588a 25,453 26,422 28,197 24,844 24,846 24,856

sks622a 43,930 45,018 46,017 43,048 43,048 43,048

sks625a 25,563 26,672 27,957 25,253 25,253 25,253

sks628a 17,463 18,431 20,707 17,047 17,057 17,123

sks652a 31,292 33,022 35,426 30,801 30,801 30,801

sks655a 17,409 19,137 23,546 16,158 16,158 16,158

sks658a 9,948 12,715 18,469 9,623 9,623 9,626

sks682a 38,930 39,722 41,137 38,836 38,940 39,109

sks685a 38,736 39,744 41,345 38,084 38,096 38,166

sks688a 34,456 35,826 37,229 33,551 33,654 33,665

sks922a 91,516 93,966 96,966 88,994 89,606 90,514

sks925a 74,327 76,438 79,979 72,038 72,045 72,141

sks928a 38,676 41,879 49,091 33,825 33,992 34,159

sks952a 73,718 76,863 79,847 68,150 68,188 68,441

sks955a 35,647 40,444 45,820 30,660 30,664 30,700

sks958a 23,553 30,662 39,623 19,945 19,972 20,028

sks982a 1E+05 1E+05 1E+05 98,613 99,041 99,349

sks985a 82,254 84,966 87,173 78,296 78,442 78,532

sks988a 88,094 91,422 96,318 81,984 81,993 82,097
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random assignment), it yields a better result. Since the

assignment method is determined, the interval of AC generation

is set to every 50 generation randomly since it is not a

significant factor.

Finally, the parameter setting of ACGA from ANOVA result

is shown at Table 6.
ACGA ACGADP

Min Mean Max Min Mean Max

5,286 5,289 5,298 5,286 5288.7 5,298

3,958 3,958 3,958 3,958 3,958 3,958

2,085 2,085 2,085 2,085 2,085 2,085

3,947 3,979 4,067 3,947 3,947 3,947

2,372 2,380 2,388 2,372 2372.5 2,388

1,184 1,200 1,248 1,184 1192.7 1,248

4,348 4,351 4,355 4,348 4353.8 4,355

4,452 4,452 4,452 4,452 4,452 4,452

3,421 3,421 3,421 3,421 3,421 3,421

11,568 11,577 11,622 11,568 11,570 11,622

7,587 7,587 7,587 7,587 7,587 7,587

3,164 3,164 3,164 3,164 3,164 3,164

7,392 7,394 7,395 7,392 7394.2 7,395

6,056 6,065 6,193 6,056 6057.5 6,058

3,069 3,073 3,076 3,069 3072.5 3,076

11,140 11,149 11,222 11,140 11,142 11,154

9,148 9,148 9,148 9,148 9,148 9,148

11,317 11,317 11,317 11,317 11,317 11,317

25,656 25,659 25,704 25,656 25,657 25,687

12,601 12,606 12,668 12,601 12,601 12,601

7,129 7,129 7,129 7,129 7,129 7,129

11,367 11,406 11,581 11,367 11,367 11,367

6,405 6,427 6,666 6,405 6,405 6,405

4,294 4,321 4,391 4,294 4300.4 4,306

19,559 19,573 19,735 19,559 19,562 19,572

15,256 15,338 15,480 15,256 15,350 15,480

16,862 16,863 16,888 16,862 16,863 16,888

29,309 29,312 29,396 29,309 29,310 29,311

25,433 25,438 25,469 25,433 25,434 25,444

10,798 10,838 11,129 10,798 10,804 10,823

22,863 22,894 23,148 22,863 22,863 22,863

10,187 10,216 10,299 10,207 10,209 10,226

5,269 5,269 5,269 5,269 5,269 5,269

27,939 27,947 28,056 27,939 27,986 28,284

24,828 24,839 24,853 24,828 24,850 24,853

24,844 24,845 24,861 24,844 24,845 24,861

43,048 43,120 43,479 43,048 43,048 43,048

25,229 25,260 25,307 25,253 25,253 25,253

17,047 17,059 17,162 17,047 17,055 17,123

30,801 30,871 31,080 30,801 30,801 30,801

16,158 16,218 16,635 16,158 16,158 16,158

9,623 9,655 9,724 9,623 9623.2 9,626

38,714 38,749 38,863 38,744 38,923 39,109

38,084 38,103 38,166 38,084 38,090 38,166

33,551 33,639 33,665 33,551 33,646 33,665

88,841 88,894 89,067 88,866 89,315 90,493

72,038 72,065 72,114 72,038 72,055 72,120

33,830 33,973 34,138 33,903 34,019 34,195

68,150 68,288 68,674 68,150 68,179 68,253

30,582 30,683 31,312 30,590 30,663 30,697

19,950 20,025 20,201 19,954 20,012 20,108

98,613 98,644 98,832 98,613 99,081 99,349

78,296 78,414 78,520 78,296 78,445 78,557

81,984 82,002 82,053 81,984 81,995 82,045
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4.2. Experimental results of the single machine scheduling

problem

Sourd and Sidhoum [33] provided numerous data sets,

including 20, 30, 40, 50, 60, and 90 for test. Each job set of
Table 8

The median and standard deviation of the four algorithms

Instance SGA GADP

Median S.D. Median S.D.

sks222a 5,372 88.3 5,286 5.53

sks225a 4,179 104.4 3,958 3.47

sks228a 2127.5 124.3 2,085 0

sks252a 4,166 126.4 3,947 0

sks255a 2447.5 113.9 2,372 0

sks258a 1,248 35.8 1,248 19.5

sks282a 4,399 105.1 4,355 3.15

sks285a 4,656 133.4 4,452 0

sks288a 3490.5 97.4 3,421 0

sks322a 12,048 269 11,568 13.7

sks325a 8058.5 421.2 7,587 155.4

sks328a 3,475 375.1 3,164 0

sks352a 8170.5 412.5 7,395 0

sks355a 6824.5 369.9 6,058 39.2

sks358a 3180.5 210.6 3,076 3.01

sks382a 11,329 130 11,154 6.64

sks385a 9,199 46.5 9,148 0

sks388a 11,438 146 11,317 0

sks422a 26,079 401 25,656 10.2

sks425a 13,656 501 12,605 1.38

sks428a 7720.5 319.2 7,129 2.19

sks452a 12,658 552 11,367 0

sks455a 7,412 661 6,405 0

sks458a 5,394 890 4,305 9.74

sks482a 20,103 262 19,572 43.1

sks485a 16,034 331 15,256 90.5

sks488a 18,014 355 16,888 17.4

sks522a 30,487 694 29,311 44.9

sks525a 26,157 281 25,433 15.3

sks528a 11,963 489 10,823 6.34

sks552a 24,705 740 22,863 0

sks555a 11,997 988 10,227 44.7

sks558a 7,159 984 5,269 53.4

sks582a 29,138 537 28,167 118

sks585a 25,840 273 24,828 6.84

sks588a 26,241 576 24,844 3.98

sks622a 45,172 604 43,048 0

sks625a 26,759 545 25,253 0

sks628a 18,026 837 17,047 21.3

sks652a 32,983 962 30,801 0

sks655a 18,879 1,346 16,158 0

sks658a 12,159 1,921 9,623 0.54

sks682a 39,572 571 38,934 94.2

sks685a 39,819 607 38,084 27.3

sks688a 35,858 646 33,665 34.2

sks922a 94,129 1,356 89,408 499

sks925a 76,389 1,365 72,041 18.7

sks928a 41,419 2,535 34,015 73.1

sks952a 76,780 1,446 68,150 66.2

sks955a 40,066 2,457 30,660 8.98

sks958a 29,897 3,751 19,963 22

sks982a 102,129 1,420 99,064 258

sks985a 85,093 1,220 78,434 46

sks988a 91,902 1,838 81,985 21.7
20-job to 50-job problems contains 49 combinations while

there are only 9 instances in the job set for 60-job and 90-job

problems. We carried out our experiment on these total 214

instances and each instance is replicated for 30 times. The

stopping criterion is the number of examined solutions reaching
ACGA ACGADP

Median S.D. Median S.D.

5,286 5.16 5,286 5.16

3,958 0 3,958 0

2,085 0 2,085 0

3,947 54 3,947 0

2,380 8.14 2,372 2.92

1,184 27.8 1,184 22.1

4,348 3.49 4,355 2.65

4,452 0 4,452 0

3,421 0 3,421 0

11,568 18.7 11,568 9.86

7,587 0 7,587 0

3,164 0 3,164 0

7,395 1.49 7,395 1.35

6,058 31.5 6,058 0.9

3,076 3.43 3072.5 3.56

11,140 15.9 11,140 4.84

9,148 0 9,148 0

11,317 0 11,317 0

25,656 12.2 25,656 5.67

12,601 14 12,601 0

7,129 0 7,129 0

11,367 60.3 11,367 0

6,405 55.4 6,405 0

4,306 27.4 4,306 6.09

19,572 31.2 19,559 5.29

15,256 96.7 15,430 90.3

16,862 4.75 16,862 4.75

29,309 15.8 29,309 0.9

25,433 12.4 25,433 2.79

10,798 94.7 10,798 10.8

22,874 63.9 22,863 0

10,207 28.6 10,207 5.8

5,269 0 5,269 0

27,939 22.6 27,939 119

24,828 12.6 24,853 8.64

24,844 3.46 24,844 3.46

43,048 112 43,048 0

25,253 17.2 25,253 0

17,047 34.8 17,047 21.7

30,801 106 30,801 0

16,158 152 16,158 0

8 9,624 40.7 9,623 0.761

38,716 53.2 38,923 109

38,084 33.8 38,084 20.3

33,665 48.7 33,665 42.3

88,853 75.3 89,388 353

72,065 24.4 72,043 21.6

33,955 86.4 34,024 66.2

68,220 153 68,150 45.9

30,645 143 30,667 18.2

20,012 59 20,007 41.1

98,637 52.3 99,147 272

78,434 65.4 78,435 39.9

81,989 22.2 81,987 15.4



Table 9

The Duncan grouping result for the four algorithms

Duncan Grouping Mean N Method

A 13982.894 6,420 SGA

B 12827.096 6,420 GADP

B

C B 12816.471 6,420 ACGADP

C

C 12813.276 6,420 ACGA

Table 10

Wilcoxon scores (Rank Sums) for objective values classified by these four

algorithms

Method N Sum of

scores

Expected

under H0

S.D. under

H0

Mean

score

ACGADP 6,420 81,162,861 82,436,010 514410.5 12642.19

ACGA 6,420 81,180,297 82,436,010 514410.5 12644.91

GADP 6,420 81,256,352 82,436,010 514410.5 12656.75

SGA 6,420 86,144,531 82,436,010 514410.5 13418.15

Fig. 5. The convergence diagram of the four algorithms for 90-job problem

(sks988a).

Fig. 6. The probability distribution of a 20-job case in different position for generatio

different position for generation 0 (a different color means a different position). (b

generation 0 (a different color means a different position). (c) The probability distrib

color means a different position). (d) The probability distribution of job 11 to job 20

position). (e) The probability distribution of job 1 to job 10 in each different posit

probability distribution of job 11 to job 20 in each different position for generatio
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100,000 solutions. The parameters of GA include the crossover

rate, mutation rate, and population size is set as 0.8, 0.5, and

100, respectively. The proposed algorithm is compared with a

simple genetic algorithm (SGA), a genetic algorithm with

dominance properties (GADP) that was proposed by our

previous work, a GA with injecting AC (ACGA), and a hybrid

algorithm ACGADP. The GADP applies a heuristic to generate

a good initial population in the beginning and it is able to

enhance the exploration ability of simple genetic algorithm.

Finally, an average relative error is applied as a performance

metric that shows each average objective with respect to its

optimal solution. The equation is calculated by (avgObj

� Opt)/Opt � 100%, where the avgObj is the average objective
n, 0, 500 and 1000 (a–f). (a) The probability distribution of job 1 to job 10 in each

) The probability distribution of job 11 to job 20 in each different position for

ution of job 1 to job 10 in each different position for generation 500 (a different

in each different position for generation 500 (a different color means a different

ion for generation 1000 (a different color means a different position). (f) The

n 1000 (a different color means a different position).
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value obtained by each algorithm. These results are depicted in

Tables 7 and 8. The completed test results are available on our

website.1

GADP, ACGA, and ACGADP outperform the SGA in the

average error ratio because the total average ratio of SGA is

9.971% while other three algorithms is less than 0.26%. Then,

the standard deviation of ACGADP is smaller than others. To

compare the performance of these four algorithms, the ANOVA

test shows there is a significant difference among these

methods. Thus, the Duncan grouping method, Kruskall–Wallis

test, and Rank Sums are further applied to compare these

algorithms using SAS software package. Table 9 is the Duncan

grouping result, which shows that there is no difference

between ACGA and ACGADP. In addition, there is no

difference between ACGADP and GADP. However, ACGA,

ACGADP, and SGA are not in the same group, it means there is

a significant difference between each of them. Consequently,

ACGA is the best algorithm, ACGADP and GADP are second

rank, and SGA is the worst.

The Kruskall–Wallis test shows the Chi-square of the four

algorithms is 51.9875 and the corresponding P-value is less

than 0.0001, which shows there is a significant difference

among these algorithms. Table 10 presents the Rank Sums of

the algorithms. The sum of scores of SGA is 86,144,531 which

is far from the expected under H0 (say 82,436,010) compared to

ACGADP, ACGA, and GADP. Hence, the SGA is indeed worse

method than others.

To show the convergence process for these difference

algorithms, i.e., SGA, GADP, ACGA and ACGADP, instance

sks988a is applied as a demonstration. Fig. 5 shows that GADP

has the quickest convergence then ACGA and lastly is SGA.

However, after 20 generation ACGA has almost the same

solution quality as GADP.

In addition, the probabilistic matrix of a 20-job case is

shown in Fig. 6 for initial generation, 500 generation and 999

generation. The figure shows that each job will be converged to

a finite position or finite positions. That is the most of the jobs

will have a large probability which is very close to one for one

particular position while the rest of the probabilities will be

very close to zero in other positions.

5. Conclusions

This research develops a genetic algorithm with injecting

artificial chromosomes in solving the single machine schedul-

ing problems with the objective of minimizing the total

deviation. From the experimental results, we find out that the

proposed algorithm is able to obtain a very good solution

quality when compared with SGA and GADP. Without any

complex mathematic calculation and proofing procedure,

ACGA can solve the problem in as good as or a better solution

quality than GADP. The reason is that the dominance matrix

can truly capture the gene information and prohibits jobs that
1 http://ppc.iem.yzu.edu.tw/publication/sourceCodes/InjectionArtificial-

Chromosomes/.
are assigned to inappropriate positions. Then, jobs are

potentially to be assigned to a position with higher probability

by roulette wheel selection method.

One of the major advantages of injecting artificial

chromosomes to GA is that it can start with any good initial

solutions generated from Meta heuristics or dominance

properties. ACGA will create a much diversified population

according to the probability matrix transformed from the best

initial seeds and finally converge to reach a near-optimal

solution. Consequently, after the intensive experiments in the

single machine scheduling problem, the result is very

satisfactory and convincing and we expect to apply the ACGA

to other combinatorial problems in the near future.
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